Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things

Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 17; číslo 4; s. 2890 - 2898
Hlavní autoři: Li, Yangfan, Chen, Cen, Duan, Mingxing, Zeng, Zeng, Li, Kenli
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines.
AbstractList Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the applying of advanced learning frameworks, i.e., deep learning (DL). Nevertheless, this is a challenging task since the existing DL models are hard to accurately express the complex semantics and attributes for those heterogeneous nodes and links in HGoT. To address this issue, we develop attention-aware encoder-decoder graph neural networks for HGoT, termed as HGAED. Specifically, we utilize the attention-based separate-and-merge method to improve the accuracy, and leverage the encoder-decoder architecture for implementation. In the heart of HGAED, the separate-and-merge processes can be encapsulated into encoding and decoding blocks. Then, blocks are stacked for constructing an encoder-decoder architecture to jointly and hierarchically fuse heterogeneous structures and contents of nodes. Extensive experiments on three real-world datasets demonstrate the superior performance of HGAED over state-of-the-art baselines.
Author Li, Kenli
Chen, Cen
Zeng, Zeng
Li, Yangfan
Duan, Mingxing
Author_xml – sequence: 1
  givenname: Yangfan
  orcidid: 0000-0003-3640-5088
  surname: Li
  fullname: Li, Yangfan
  email: yangfanli@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Cen
  orcidid: 0000-0003-1389-0148
  surname: Chen
  fullname: Chen, Cen
  email: chencen@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Mingxing
  orcidid: 0000-0002-1049-6244
  surname: Duan
  fullname: Duan, Mingxing
  email: duanmingxing@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Zeng
  orcidid: 0000-0002-2405-0323
  surname: Zeng
  fullname: Zeng, Zeng
  email: zeng_zeng@hotmail.com
  organization: Institute for Infocomm Research, Singapore
– sequence: 5
  givenname: Kenli
  orcidid: 0000-0002-2635-7716
  surname: Li
  fullname: Li, Kenli
  email: lkl@hnu.edu.cn
  organization: College of Information Science and Engineering, Hunan University, Changsha, China
BookMark eNp9kMFPwjAUxhuDiYDeTbws8Tx8bbeuPRJEICGaGDwv3XiDIbbYdiH-925CPHgw7_B9h-_3Xt43ID1jDRJyS2FEKaiH1WIxYsBgxIGlqWIXpE9VQmOAFHqtT1Macwb8igy83wHwDLjqk9dxCGhCbU08PmqH0dSUdo0ufsQfjZ6xcXrfSjha9-6jyrpojgGd3aBB2_ho5vRh6yNbRattbTb-mlxWeu_x5qxD8vY0XU3m8fJltpiMl3HJFA2xVJyuC6mTQjJYt15QmVBdCcVLhkxLSYELnYmqUO2ITCUoFMoKhK6KTPIhuT_tPTj72aAP-c42zrQnc5ZkkiaZ4F1KnFKls947rPKyDrp7ODhd73MKeddf3vaXd_3l5_5aEP6AB1d_aPf1H3J3QmpE_I0rBgmXgn8DgRt8PA
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JBHI_2021_3109119
crossref_primary_10_3390_math12030488
crossref_primary_10_1109_ACCESS_2023_3345795
crossref_primary_10_3390_e26110957
crossref_primary_10_1109_TETCI_2024_3369628
crossref_primary_10_1109_TII_2021_3100978
crossref_primary_10_1088_1742_6596_2113_1_012082
crossref_primary_10_1109_JIOT_2021_3092360
crossref_primary_10_1109_TII_2021_3092774
crossref_primary_10_1109_TII_2021_3100397
crossref_primary_10_1007_s10489_024_05305_4
crossref_primary_10_3390_s23031352
crossref_primary_10_1016_j_eswa_2025_127241
crossref_primary_10_1080_08839514_2024_2321552
crossref_primary_10_1109_TSTE_2023_3320690
crossref_primary_10_1109_MSMC_2021_3114538
Cites_doi 10.18653/v1/D15-1166
10.1145/3308558.3313562
10.1109/TKDE.2016.2598561
10.1145/3018661.3018735
10.1145/3097983.3098036
10.1145/3289600.3291001
10.1609/aaai.v33i01.3301485
10.1109/TII.2016.2605581
10.1145/3277593.3277598
10.1145/2623330.2623732
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2016.91
10.1016/j.future.2013.01.010
10.1109/TII.2017.2759178
10.1109/TPAMI.2016.2577031
10.14778/3402707.3402736
10.1109/TII.2016.2627479
10.1109/TKDE.2018.2833443
10.1109/TCYB.2020.2998126
10.1109/TPAMI.2016.2644615
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.3025592
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 2898
ExternalDocumentID 10_1109_TII_2020_3025592
9204386
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China Stem Cell and Translational Research
  grantid: 2018YFB1003401
  funderid: 10.13039/501100013290
– fundername: National Natural Science Foundation of China
  grantid: 61902120
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61860206011
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M662768; 2019TQ0086
  funderid: 10.13039/501100002858
– fundername: Singapore-China NRF-NSFC
  grantid: NRF2016NRF-NSFC001-111
– fundername: National Natural Science Foundation of China
  grantid: 61625202
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607814600058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:18:03 EDT 2025
Sat Nov 29 04:16:55 EST 2025
Tue Nov 18 21:43:02 EST 2025
Wed Aug 27 06:01:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-8931db8a4b820d31d61841af693c2e2a881036a76fb9b9b6794e69e8f06afb783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1049-6244
0000-0002-2405-0323
0000-0003-3640-5088
0000-0003-1389-0148
0000-0002-2635-7716
PQID 2478147638
PQPubID 85507
PageCount 9
ParticipantIDs ieee_primary_9204386
proquest_journals_2478147638
crossref_citationtrail_10_1109_TII_2020_3025592
crossref_primary_10_1109_TII_2020_3025592
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref30
veli?kovi? (ref12) 0
ref2
ref1
ref17
ref16
wu (ref9) 2016
ref19
lee (ref27) 0
gao (ref21) 0
kipf (ref11) 0
shen (ref28) 0
shang (ref29) 2016
ying (ref26) 0
ref24
ref23
ref25
ref20
ref22
bruna (ref18) 0
ref8
ref7
defferrard (ref10) 0
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.18653/v1/D15-1166
– start-page: 1
  year: 2016
  ident: ref29
  article-title: Meta-path guided embedding for similarity search in large-scale heterogeneous information networks
– ident: ref22
  doi: 10.1145/3308558.3313562
– ident: ref13
  doi: 10.1109/TKDE.2016.2598561
– ident: ref14
  doi: 10.1145/3018661.3018735
– start-page: 4800
  year: 0
  ident: ref26
  article-title: Hierarchical graph representation learning with differentiable pooling
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 1
  year: 2016
  ident: ref9
  article-title: Google's neural machine translation system: Bridging the gap between human and machine translation
– ident: ref24
  doi: 10.1145/3097983.3098036
– ident: ref25
  doi: 10.1145/3289600.3291001
– ident: ref19
  doi: 10.1609/aaai.v33i01.3301485
– ident: ref3
  doi: 10.1109/TII.2016.2605581
– start-page: 1
  year: 0
  ident: ref11
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proc Int Conf Learn Representations
– ident: ref5
  doi: 10.1145/3277593.3277598
– ident: ref23
  doi: 10.1145/2623330.2623732
– ident: ref17
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref6
  doi: 10.1109/CVPR.2016.91
– start-page: 3734
  year: 0
  ident: ref27
  article-title: Self-attention graph pooling
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1016/j.future.2013.01.010
– start-page: 5446
  year: 0
  ident: ref28
  article-title: DiSAN: Directional self-attention network for RNN/CNN-free language understanding
  publication-title: Proc 32nd AAAI Conf Artif Intell
– ident: ref4
  doi: 10.1109/TII.2017.2759178
– ident: ref7
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref15
  doi: 10.14778/3402707.3402736
– start-page: 1
  year: 0
  ident: ref12
  article-title: Graph attention networks
  publication-title: Proc Int Conf Learn Representations
– start-page: 1
  year: 0
  ident: ref18
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: Proc Int Conf Learn Representations
– ident: ref1
  doi: 10.1109/TII.2016.2627479
– ident: ref30
  doi: 10.1109/TKDE.2018.2833443
– start-page: 3844
  year: 0
  ident: ref10
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/TCYB.2020.2998126
– ident: ref16
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1
  year: 0
  ident: ref21
  article-title: Graph U-Nets
  publication-title: Proc 36th Int Conf Mach Learn
SSID ssj0037039
Score 2.3996806
Snippet Recent trend focuses on using heterogeneous graph of things (HGoT) to represent things and their relations in the Internet of Things, thereby facilitating the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2890
SubjectTerms Coders
Computer architecture
Decoding
Encoding
Fuses
Graph neural network (GNN)
Graph neural networks
graph of things
heterogeneous graph
Informatics
Internet of Things
Internet of Things (IoT)
Neural networks
Nodes
Semantics
Title Attention-Aware Encoder-Decoder Neural Networks for Heterogeneous Graphs of Things
URI https://ieeexplore.ieee.org/document/9204386
https://www.proquest.com/docview/2478147638
Volume 17
WOSCitedRecordID wos000607814600058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7M4UEP_pridEoOXgTj2rRrkuPQze0yRCbsVtIuAUFWaTv9931J26EogvTQHJJS3kvyvpe89z2Aq5QrdG-4ocmAGRoGiaICgQVNQ4FgWSImTzxXbILPZmKxkI8tuNnkwmitXfCZvrVNd5e_zNK1PSrrS5vIKaIt2OI8qnK1ml03wJkrHTfqwKcB84LmStKT_fl0io4gQ__UAWj2zQS5mio_NmJnXcb7__uvA9irUSQZVmo_hJZeHcHuF27BDjwNy7IKZaTDD5VrMlrZ9PWc3mv3JpaWA78xq-LAC4LolUxscEyGc0pn64I8WDLrgmSGVNU9j-F5PJrfTWhdQIGmTPolRSziLxOhwgTt_BLbtrqLr0wkg5RppoTw0YApHplE4hPh2tSR1MJ4kTIJF8EJtFfZSp8C0b4S6MnhclWOJUxyYw8PFTdLbtKB34V-I9M4rdnFbZGL19h5GZ6MUQux1UJca6EL15sRbxWzxh99O1bqm361wLvQa9QW10uviJlNng1x2xRnv486hx1mA1Nc-E0P2mW-1hewnb6XL0V-6WbVJ0viyAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFNQHf4vTqXnwRTCuTbs2eRy6ueEcIhP2VtIuAUFWWTv9972k7VAUQfrQPCSl3CW575K77wAuklCiexNqGreZpr4XS8oRWNDE5wiWBWLy2LHFJsLRiE8m4rEGV8tcGKWUDT5T16Zp7_KnabIwR2UtYRI5ebACq6ZyVpmtVe27Hs5dYdlR2y71mONVl5KOaI0HA3QFGXqoFkKzb0bIVlX5sRVb-9Lb_t-f7cBWiSNJp1D8LtTUbA82v7AL7sNTJ8-LYEba-ZBzRbozk8A-p7fKvokh5sBvjIpI8IwgfiV9Ex6T4qxS6SIjd4bOOiOpJkV9zwN47nXHN31allCgCRNuThGNuNOYSz9GSz_Ftqnv4kodCC9hiknOXTRhMgx0LPAJcHWqQCiunUDqOOTeIdRn6UwdAVGu5OjL4YKVlidMhNocH8pQT0OdtN0GtCqZRknJL27KXLxG1s9wRIRaiIwWolILDbhcjngruDX-6LtvpL7sVwq8Ac1KbVG5-LKImfRZHzdOfvz7qHNY748fhtFwMLo_gQ1mwlRsME4T6vl8oU5hLXnPX7L5mZ1hn-Qzy1E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Aware+Encoder%E2%80%93Decoder+Neural+Networks+for+Heterogeneous+Graphs+of+Things&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Li%2C+Yangfan&rft.au=Chen%2C+Cen&rft.au=Duan%2C+Mingxing&rft.au=Zeng%2C+Zeng&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=4&rft.spage=2890&rft_id=info:doi/10.1109%2FTII.2020.3025592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon