Specification-Guided Verification and Abstraction Refinement of Mixed Monotone Stochastic Systems
This article addresses the problem of verifying discrete-time stochastic systems against omega-regular specifications using finite-state abstractions. Omega-regular properties allow specifying complex behavior and encompass, for example, linear temporal logic. We focus on a class of systems with mix...
Uložené v:
| Vydané v: | IEEE transactions on automatic control Ročník 66; číslo 7; s. 2975 - 2990 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This article addresses the problem of verifying discrete-time stochastic systems against omega-regular specifications using finite-state abstractions. Omega-regular properties allow specifying complex behavior and encompass, for example, linear temporal logic. We focus on a class of systems with mixed monotone dynamics. This class is shown to be amenable to efficient reachable set computation and models a wide range of physically relevant systems. In general, finite-state abstractions of continuous state stochastic systems give rise to augmented Markov chains wherein the probabilities of transition between states are restricted to an interval. We present a procedure to compute a finite-state interval-valued Markov chain (IMC) abstraction of discrete-time, mixed monotone stochastic systems subject to affine disturbances given a rectangular partition of the state space. Then, we suggest an algorithm for performing verification against omega-regular properties in IMCs. Specifically, we aim to compute bounds on the probability of satisfying a specification from any initial state in the IMC. This is achieved by solving a reachability problem on the sets of so-called winning and losing components in the Cartesian product between the IMC and a Rabin automaton representing the specification. Next, the verification of IMCs may yield a set of states whose acceptance status is undecided with respect to the specification, requiring a refinement of the abstraction. We describe a specification-guided approach that compares the best and worst case behaviors of accepting paths in the IMC and targets the appropriate states accordingly. Finally, we show a case study. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2020.3014142 |