An improved arithmetic optimization algorithm with hybrid elite pool strategies

This paper presents an improved arithmetic optimization algorithm that incorporates hybrid elite pool strategies to address the limitations of the arithmetic optimization algorithm (AOA). In AOA, the linear mathematical optimization acceleration (MOA) function cannot balance global exploitation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 28; H. 2; S. 1127 - 1155
Hauptverfasser: Liu, Haiyang, Zhang, Xingong, Zhang, Hanxiao, Cao, Zhong, Chen, Zhaohui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2024
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an improved arithmetic optimization algorithm that incorporates hybrid elite pool strategies to address the limitations of the arithmetic optimization algorithm (AOA). In AOA, the linear mathematical optimization acceleration (MOA) function cannot balance global exploitation and local exploration well. Therefore, the accuracy and convergence speed of the algorithm cannot be guaranteed. To improve the performance of AOA, this paper reconstructed a nonlinear MOA function, which is expected to balance the exploitation and the exploration of AOA. Furthermore, four hybrid elite pool strategies are integrated to enhance the ability to escape local optima. The proposed algorithm inherits the fast convergence of AOA and develops the performance of escaping local optima. Numerical experiment results on benchmark functions and engineering problems show that the proposed algorithm outperforms other compared meta-heuristic algorithms in terms of convergence speed and accuracy.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-023-09153-1