A Deep Dive into Machine Learning: The Roles of Neural Networks and Random Forests in QSPR Analysis

Machine learning has significantly improved the field of drug development by enabling the accurate prediction of physicochemical properties and biological activities of compounds. Using machine learning and topological indices to analyze a drug’s structures can make process faster and more accurate....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioNanoScience Jg. 15; H. 1
Hauptverfasser: Ahmed, Wakeel, Ashraf, Tamseela, AlMutairi, Dalal, Zaman, Shahid, Ahmed, Shakeel, Ehsan, Huma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.03.2025
Schlagworte:
ISSN:2191-1630, 2191-1649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning has significantly improved the field of drug development by enabling the accurate prediction of physicochemical properties and biological activities of compounds. Using machine learning and topological indices to analyze a drug’s structures can make process faster and more accurate. Our study explores the molecular characteristics of 15 sulfur-based drugs ( S VI ) . Topological indices of these drugs have been calculated, and physiochemical properties have been examined using machine learning algorithms. Machine learning algorithms such as artificial neural networks, random forests, and adaptive boosting play a crucial role in this process. These algorithms utilize labeled data to make predictions about intricate molecular activities by assisting in the discovery of novel medication candidates and the enhancement of their properties. These algorithms enhance the accuracy of predictions related to physiochemical properties, reduce the time and cost associated with drug discovery, and rapidly analyze vast datasets by utilizing machine learning, consequently expediting the advancement of novel and efficient therapies.
AbstractList Machine learning has significantly improved the field of drug development by enabling the accurate prediction of physicochemical properties and biological activities of compounds. Using machine learning and topological indices to analyze a drug’s structures can make process faster and more accurate. Our study explores the molecular characteristics of 15 sulfur-based drugs ( S VI ) . Topological indices of these drugs have been calculated, and physiochemical properties have been examined using machine learning algorithms. Machine learning algorithms such as artificial neural networks, random forests, and adaptive boosting play a crucial role in this process. These algorithms utilize labeled data to make predictions about intricate molecular activities by assisting in the discovery of novel medication candidates and the enhancement of their properties. These algorithms enhance the accuracy of predictions related to physiochemical properties, reduce the time and cost associated with drug discovery, and rapidly analyze vast datasets by utilizing machine learning, consequently expediting the advancement of novel and efficient therapies.
ArticleNumber 89
Author Ehsan, Huma
Ashraf, Tamseela
Ahmed, Wakeel
AlMutairi, Dalal
Ahmed, Shakeel
Zaman, Shahid
Author_xml – sequence: 1
  givenname: Wakeel
  orcidid: 0009-0004-7085-9109
  surname: Ahmed
  fullname: Ahmed, Wakeel
  email: wakeelahmed784@gmail.com
  organization: Department of Mathematics, COMSATS University Islamabad, Department of Mathematics, University of Sialkot
– sequence: 2
  givenname: Tamseela
  orcidid: 0009-0001-6257-9228
  surname: Ashraf
  fullname: Ashraf, Tamseela
  organization: Department of Mathematics, COMSATS University Islamabad
– sequence: 3
  givenname: Dalal
  orcidid: 0000-0002-8528-4553
  surname: AlMutairi
  fullname: AlMutairi, Dalal
  organization: Department of Mathematics, College of Science and Humanities, Shaqra University
– sequence: 4
  givenname: Shahid
  orcidid: 0000-0001-6152-8202
  surname: Zaman
  fullname: Zaman, Shahid
  organization: Department of Mathematics, University of Sialkot, Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa
– sequence: 5
  givenname: Shakeel
  orcidid: 0009-0006-5316-2128
  surname: Ahmed
  fullname: Ahmed, Shakeel
  organization: Department of Mathematics, University of Sialkot
– sequence: 6
  givenname: Huma
  orcidid: 0009-0002-4934-5993
  surname: Ehsan
  fullname: Ehsan, Huma
  organization: Department of Mathematics, University of Sialkot
BookMark eNp9kMtOwzAQRS1UJErpD7DyDwT8SGyHXdXyksqrlHU0SZzWJbUrOwX17zEUsWDRWcyMruZcae4p6llnNULnlFxQQuRloEwIlRCWJoRKShJ1hPqM5jShIs17fzsnJ2gYworEkkRwxfuoGuGJ1hs8MR8aG9s5_ADV0liNpxq8NXZxhedLjWeu1QG7Bj_qrYc2ju7T-feAwdZ4Fptb4xvndehCtMEvr88zPLLQ7oIJZ-i4gTbo4e8coLeb6_n4Lpk-3d6PR9OkYjntEpU2UEtZpyQVaVNKUYLmoMuy5AxYnbEKqkxQoVTUGXCdCakgK2WZc5lFbYDU3rfyLgSvm6IyHXTG2c6DaQtKiu-8in1eRcyr-MmrUBFl_9CNN2vwu8MQ30MhHtuF9sXKbX18OhyivgBE5X8I
CitedBy_id crossref_primary_10_1142_S2251237325500066
crossref_primary_10_1002_slct_202501237
crossref_primary_10_1038_s41598_025_88044_x
crossref_primary_10_1142_S2424913025500055
Cites_doi 10.1016/S0012-365X(02)00256-X
10.1051/e3sconf/202450804005
10.1021/ja00856a001
10.1038/s41598-023-32347-4
10.1021/ci900115y
10.1039/rr9710400173
10.1038/s41598-024-62819-0
10.1038/s41467-022-35692-6
10.4337/9781803923918.00034
10.1080/10406638.2023.2230336
10.1186/s13321-023-00694-z
10.1201/9780429450532
10.1016/j.ejmech.2018.11.017
10.1039/D1NJ04935F
10.1007/978-3-642-77894-0
10.1080/19361610.2022.2114744
10.1021/ja01193a005
10.21037/atm.2016.06.20
10.1038/s41698-017-0029-7
10.1007/978-1-349-03521-2
10.1142/S0217984924502609
10.1016/j.jocn.2021.07.016
10.21275/ART20203995
10.1002/qua.26594
10.2478/awutm-2013-0014
10.1016/j.chemolab.2022.104690
10.1016/j.amc.2020.125706
10.1016/j.heliyon.2024.e23981
10.13069/jacodesmath.867532
10.1007/s10910-015-0480-z
10.1145/3378936.3378972
10.1038/s41598-023-42340-6
10.1093/bib/bbaa161
10.1016/j.amc.2014.04.091
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s12668-024-01710-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-1649
ExternalDocumentID 10_1007_s12668_024_01710_8
GroupedDBID -58
-5G
-BR
-EM
-~C
0R~
0VY
203
29~
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
S27
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
Z85
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-84fad77d40464fb76bae3aebbb32a2d52cac561688ae32a3e5678a5b7b9375ae3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375563200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2191-1630
IngestDate Sat Nov 29 08:21:45 EST 2025
Tue Nov 18 22:14:27 EST 2025
Fri Feb 21 02:46:45 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Random forest
Python algorithm
Topological indices
Machine learning
Artificial neural networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-84fad77d40464fb76bae3aebbb32a2d52cac561688ae32a3e5678a5b7b9375ae3
ORCID 0009-0001-6257-9228
0000-0001-6152-8202
0009-0006-5316-2128
0009-0004-7085-9109
0000-0002-8528-4553
0009-0002-4934-5993
ParticipantIDs crossref_citationtrail_10_1007_s12668_024_01710_8
crossref_primary_10_1007_s12668_024_01710_8
springer_journals_10_1007_s12668_024_01710_8
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle BioNanoScience
PublicationTitleAbbrev BioNanoSci
PublicationYear 2025
Publisher Springer US
Publisher_xml – name: Springer US
References 1710_CR38
S Zaman (1710_CR14) 2023; 13
1710_CR15
G Chen (1710_CR12) 2022; 231
1710_CR32
PS Ranjini (1710_CR40) 2013; 1
1710_CR11
1710_CR30
S Hayat (1710_CR23) 2014; 240
M Randic (1710_CR36) 1975; 97
DH Rouvray (1710_CR17) 1971; 4
ME Lokanan (1710_CR2) 2024; 19
Harry Wiener (1710_CR24) 1947; 69
1710_CR7
X Wang (1710_CR8) 2021; 91
MR Farahani (1710_CR37) 2013; 51
1710_CR5
1710_CR3
1710_CR4
W Ahmed (1710_CR21) 2024; 14
B Mahesh (1710_CR1) 2020; 9
GV Rajasekharaiah (1710_CR39) 2021; 8
JB Babujee (1710_CR22) 2012; 6
SAK Kirmani (1710_CR27) 2021; 121
JR Dias (1710_CR16) 1993
S Fajtlowicz (1710_CR31) 1987; 60
1710_CR41
H He (1710_CR10) 2022; 46
1710_CR20
E Estrada (1710_CR34) 1998; 37A
W Zhao (1710_CR33) 2021; 2021
M Moret (1710_CR13) 2023; 14
Charles Delorme (1710_CR25) 2002; 257
Q Bai (1710_CR9) 2021; 22
H Zhou (1710_CR28) 2024; 44
S Zaman (1710_CR19) 2023; 13
W Gao (1710_CR35) 2016; 48
JA Bondy (1710_CR18) 1976
W Zhang (1710_CR6) 2017; 1
1710_CR29
V Consonni (1710_CR26) 2009; 49
References_xml – ident: 1710_CR30
– volume: 257
  start-page: 29
  issue: 1
  year: 2002
  ident: 1710_CR25
  publication-title: Discrete Mathematics
  doi: 10.1016/S0012-365X(02)00256-X
– volume: 1
  start-page: 116
  issue: 4
  year: 2013
  ident: 1710_CR40
  publication-title: Int. J. Graph Theory
– ident: 1710_CR3
  doi: 10.1051/e3sconf/202450804005
– volume: 97
  start-page: 6609
  issue: 23
  year: 1975
  ident: 1710_CR36
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00856a001
– volume: 13
  start-page: 5314
  issue: 1
  year: 2023
  ident: 1710_CR14
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-32347-4
– volume: 49
  start-page: 1669
  issue: 7
  year: 2009
  ident: 1710_CR26
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci900115y
– volume: 4
  start-page: 173
  issue: 2
  year: 1971
  ident: 1710_CR17
  publication-title: Royal Institute of Chemistry, Reviews
  doi: 10.1039/rr9710400173
– volume: 14
  start-page: 12264
  issue: 1
  year: 2024
  ident: 1710_CR21
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-62819-0
– volume: 14
  start-page: 114
  issue: 1
  year: 2023
  ident: 1710_CR13
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-35692-6
– ident: 1710_CR4
  doi: 10.4337/9781803923918.00034
– volume: 44
  start-page: 3079
  issue: 5
  year: 2024
  ident: 1710_CR28
  publication-title: Polycyclic Aromatic Compounds
  doi: 10.1080/10406638.2023.2230336
– ident: 1710_CR11
  doi: 10.1186/s13321-023-00694-z
– ident: 1710_CR15
  doi: 10.1201/9780429450532
– ident: 1710_CR41
  doi: 10.1016/j.ejmech.2018.11.017
– volume: 60
  start-page: 187
  year: 1987
  ident: 1710_CR31
  publication-title: Congr. Numer
– volume: 46
  start-page: 5188
  issue: 11
  year: 2022
  ident: 1710_CR10
  publication-title: New Journal of Chemistry
  doi: 10.1039/D1NJ04935F
– volume-title: Molecular orbital calculations using chemical graph theory
  year: 1993
  ident: 1710_CR16
  doi: 10.1007/978-3-642-77894-0
– volume: 19
  start-page: 20
  issue: 1
  year: 2024
  ident: 1710_CR2
  publication-title: Journal of Applied Security Research
  doi: 10.1080/19361610.2022.2114744
– volume: 69
  start-page: 17
  issue: 1
  year: 1947
  ident: 1710_CR24
  publication-title: Journal of the American chemical society
  doi: 10.1021/ja01193a005
– volume: 37A
  start-page: 849
  year: 1998
  ident: 1710_CR34
  publication-title: Indian J. Chem
– ident: 1710_CR5
  doi: 10.21037/atm.2016.06.20
– volume: 1
  start-page: 25
  issue: 1
  year: 2017
  ident: 1710_CR6
  publication-title: NPJ precision oncology
  doi: 10.1038/s41698-017-0029-7
– volume: 2021
  start-page: 1
  year: 2021
  ident: 1710_CR33
  publication-title: Journal of Mathematics
– volume-title: Graph theory with applications
  year: 1976
  ident: 1710_CR18
  doi: 10.1007/978-1-349-03521-2
– ident: 1710_CR20
  doi: 10.1142/S0217984924502609
– volume: 91
  start-page: 276
  year: 2021
  ident: 1710_CR8
  publication-title: Journal of Clinical Neuroscience
  doi: 10.1016/j.jocn.2021.07.016
– volume: 9
  start-page: 381
  issue: 1
  year: 2020
  ident: 1710_CR1
  publication-title: International Journal of Science and Research (IJSR).[Internet]
  doi: 10.21275/ART20203995
– volume: 121
  start-page: e26594
  issue: 9
  year: 2021
  ident: 1710_CR27
  publication-title: International Journal of Quantum Chemistry
  doi: 10.1002/qua.26594
– volume: 6
  start-page: 5383
  issue: 108
  year: 2012
  ident: 1710_CR22
  publication-title: Applied Mathematical Sciences
– volume: 51
  start-page: 39
  issue: 2
  year: 2013
  ident: 1710_CR37
  publication-title: Annals of West University of Timisoara-Mathematics and Computer Science
  doi: 10.2478/awutm-2013-0014
– volume: 231
  year: 2022
  ident: 1710_CR12
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2022.104690
– ident: 1710_CR38
  doi: 10.1016/j.amc.2020.125706
– ident: 1710_CR29
  doi: 10.1016/j.heliyon.2024.e23981
– volume: 8
  start-page: 9
  issue: 1
  year: 2021
  ident: 1710_CR39
  publication-title: Journal of Algebra Combinatorics Discrete Structures and Applications
  doi: 10.13069/jacodesmath.867532
– ident: 1710_CR32
  doi: 10.1007/s10910-015-0480-z
– ident: 1710_CR7
  doi: 10.1145/3378936.3378972
– volume: 13
  start-page: 15159
  issue: 1
  year: 2023
  ident: 1710_CR19
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-42340-6
– volume: 22
  start-page: bbaa161
  issue: 3
  year: 2021
  ident: 1710_CR9
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbaa161
– volume: 240
  start-page: 213
  year: 2014
  ident: 1710_CR23
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.04.091
– volume: 48
  start-page: 543
  issue: 3
  year: 2016
  ident: 1710_CR35
  publication-title: Bulgarian Chemical Communications
SSID ssj0000706383
Score 2.367472
Snippet Machine learning has significantly improved the field of drug development by enabling the accurate prediction of physicochemical properties and biological...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Biological and Medical Physics
Biomaterials
Biophysics
Circuits and Systems
Engineering
Nanotechnology
Title A Deep Dive into Machine Learning: The Roles of Neural Networks and Random Forests in QSPR Analysis
URI https://link.springer.com/article/10.1007/s12668-024-01710-8
Volume 15
WOSCitedRecordID wos001375563200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2191-1649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000706383
  issn: 2191-1630
  databaseCode: RSV
  dateStart: 20110601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8R4KQduEKlNmyXlNjEmDjCNDtBuVZKmaBK001r4_Th9MCahSXDpIXKtynFiq7a_D6GLwGOcJo4mirPYUpgFJPB9RWyJy3UlEzQpIfPv-WAgxuNgWA-F5U23e1OSLG_q-bAbxBJBIKYQi_HiELGK1iDcCUvYEI5evv-sgBN3KvxNOI2WBdlz6mmZ39UsRqTFcmgZZfrb__u-HbRVZ5W4W7nBLlox6R7a_IE1uI90F_eMmeIeXG94khYZfij7KA2uIVZfrzH4DA4twhPOEmxhO0DnoOoTz7FMYxzCI3vHls8zL3JQgx9HwxA3yCYH6Ll_-3RzR2qGBaJp4BZE-ImMOY99W-BMFO8oaTxplFIelTRmVEsNCVZHCFin0jMMYptkiivIahisHaJWmqXmCGHFuLZDujZn9EGDsEAwvquMZVTn1Gkjt7FypGv4ccuC8RbNgZOtASMwYFQaMBJtdPn9zrQC31gqfdVsTFQfxHyJ-PHfxE_QBrXUv2X72SlqFbMPc4bW9WcxyWfnpQd-Aebw0Qw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BfXBb3F-5sE3Daxpu6S-DeeYuJXZTfGtJG0qA23HWv37vfRjcyADfelDuB7lcskdvbvfD6Erx7QZjRoBkcwONYWZQxzLkkSXuAxD2JxGOWR-j7kuf311BuVQWFp1u1clyfymng-7QSzhBGIK0RgvDcJX0ZoFEUsj5nvDl9mfFXDiZoG_CadRsyCbjXJa5nc1ixFpsRyaR5nOzv--bxdtl1klbhVusIdWVLyPtn5gDR6goIXbSk1wG643PI6zBPfzPkqFS4jVt1sMPoM9jfCEkwhr2A7Q6RZ94ikWcYg9eCQfWPN5plkKavDTcODhCtnkED137kd3XVIyLJCAOkZGuBWJkLHQ0gXOSLKmFMoUSkppUkFDmwYigASryTmsU2EqG2KbsCWTkNXYsHaEanESq2OEpc0CPaSrc0YLNHANBGMZUmlGdUYbdWRUVvaDEn5cs2C8-3PgZG1AHwzo5wb0eR1dz96ZFOAbS6Vvqo3xy4OYLhE_-Zv4Jdrojvo9v_fgPp6iTappgPNWtDNUy6af6hytB1_ZOJ1e5N74Dbzj0_A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60iujBt1ife_Cmi8km6W68FWtRrKG2Kr2F3WQjBU1KE_397uTRB0hBvOSwTIYwO5uZZGa-D6EL13IYjYyASOaEQGHmEte2JYESl2kKh9Moh8zvMM_jg4HbnZniz7vdq5JkMdMAKE1xdj0Ko-vp4JuOK5zo-EIA78UgfBmt2NBID9_r_bfJXxbt0I0Ci1OfTGBEtoxycuZ3NfPRab40mkec9tb_n3UbbZbZJm4W7rGDllS8izZmMAj3UNDELaVGuKVfe3gYZwl-yvsrFS6hV99vsPYl3APkJ5xEGOA8tE6v6B9PsYhD3NOX5BMDz2eapVoNfu53e7hCPNlHr-27l9t7UjIvkIC6Zka4HYmQsdCGwmckWUMKZQklpbSooKFDAxHoxKvBuV6nwlKOjnnCkUzqbMfRaweoFiexOkRYOiyA4V3IJW2tgQNAjG1KBUzrjBp1ZFYW94MSlhzYMT78KaAyGNDXBvRzA_q8ji4n94wKUI6F0lfVJvnlAU0XiB_9TfwcrXVbbb_z4D0eo3UK7MB5h9oJqmXjL3WKVoPvbJiOz3LH_AE4H9zU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Dive+into+Machine+Learning%3A+The+Roles+of+Neural+Networks+and+Random+Forests+in+QSPR+Analysis&rft.jtitle=BioNanoScience&rft.au=Ahmed%2C+Wakeel&rft.au=Ashraf%2C+Tamseela&rft.au=AlMutairi%2C+Dalal&rft.au=Zaman%2C+Shahid&rft.date=2025-03-01&rft.issn=2191-1630&rft.eissn=2191-1649&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1007%2Fs12668-024-01710-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12668_024_01710_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-1630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-1630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-1630&client=summon