Point Cloud Projective Analysis for Part-Based Grasp Planning

This work presents an approach for part-based grasp planning in point clouds. A complete pipeline is proposed that allows a robot manipulator equipped with a range camera to perform object detection, categorization, segmentation into meaningful parts, and part-based semantic grasping. A supervised i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 5; no. 3; pp. 4695 - 4702
Main Authors: Monica, Riccardo, Aleotti, Jacopo
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work presents an approach for part-based grasp planning in point clouds. A complete pipeline is proposed that allows a robot manipulator equipped with a range camera to perform object detection, categorization, segmentation into meaningful parts, and part-based semantic grasping. A supervised image-space technique is adopted for point cloud segmentation based on projective analysis. Projective analysis generates a set of 2D projections from the input object point cloud, labels each object projection by transferring knowledge from existing labeled images, and then fuses the labels by back-projection on the object point cloud. We introduce an algorithm for point cloud categorization based on 2D projections. We also propose a viewpoint aware algorithm that filters 2D projections according to the scanning path of the robot. Object categorization and segmentation experiments were carried out with both synthetic and real datasets. Results indicate that the proposed approach performs better than a CNN-based method for a training set of limited size. Finally, we show part-based grasping tasks in a real robotic setup.
AbstractList This work presents an approach for part-based grasp planning in point clouds. A complete pipeline is proposed that allows a robot manipulator equipped with a range camera to perform object detection, categorization, segmentation into meaningful parts, and part-based semantic grasping. A supervised image-space technique is adopted for point cloud segmentation based on projective analysis. Projective analysis generates a set of 2D projections from the input object point cloud, labels each object projection by transferring knowledge from existing labeled images, and then fuses the labels by back-projection on the object point cloud. We introduce an algorithm for point cloud categorization based on 2D projections. We also propose a viewpoint aware algorithm that filters 2D projections according to the scanning path of the robot. Object categorization and segmentation experiments were carried out with both synthetic and real datasets. Results indicate that the proposed approach performs better than a CNN-based method for a training set of limited size. Finally, we show part-based grasping tasks in a real robotic setup.
Author Monica, Riccardo
Aleotti, Jacopo
Author_xml – sequence: 1
  givenname: Riccardo
  orcidid: 0000-0002-1262-6348
  surname: Monica
  fullname: Monica, Riccardo
  email: riccardo.monica@unipr.it
  organization: Department of Engineering and Architecture, RIMLab, Robotics and Intelligent Machines Laboratory, University of Parma, Parma, Italy
– sequence: 2
  givenname: Jacopo
  orcidid: 0000-0003-2498-932X
  surname: Aleotti
  fullname: Aleotti, Jacopo
  email: jacopo.aleotti@unipr.it
  organization: Department of Engineering and Architecture, RIMLab, Robotics and Intelligent Machines Laboratory, University of Parma, Parma, Italy
BookMark eNp9kMFLwzAUh4NMcM7dBS8Fz53vJV2aHjzMoVMYWETPIW1TyajJTFJh_70dGyIePL0fvN_3eHznZGSd1YRcIswQobhZvyxmFCjMGAATgp2QMWV5nrKc89GvfEamIWwAAOc0Z8V8TG5LZ2xMlp3rm6T0bqPraL50srCq2wUTktb5pFQ-pncq6CZZeRW2Sdkpa419vyCnreqCnh7nhLw93L8uH9P18-ppuVinNS0wpiLjVVs3SjChOHJEBQh1lrEKK4YNayuqaMN4Dg22VFUZBdTAKFLIRTZsJuT6cHfr3WevQ5Qb1_vhxSBphkVWzIXgQ4sfWrV3IXjdytpEFY2z0SvTSQS5tyUHW3JvSx5tDSD8AbfefCi_-w-5OiBGa_1TL5AiLxj7BvT6dCg
CODEN IRALC6
CitedBy_id crossref_primary_10_1007_s00170_022_09374_y
crossref_primary_10_1038_s41598_022_13550_1
crossref_primary_10_1038_s41598_025_12660_w
crossref_primary_10_1108_AA_11_2020_0170
crossref_primary_10_5937_fme2502233P
crossref_primary_10_1016_j_eswa_2022_118624
crossref_primary_10_1109_LRA_2024_3445633
crossref_primary_10_1109_TIM_2021_3071222
crossref_primary_10_1109_LRA_2021_3064298
crossref_primary_10_1016_j_imavis_2024_105019
crossref_primary_10_3389_fnbot_2021_658280
crossref_primary_10_1016_j_iot_2024_101207
crossref_primary_10_1016_j_rcim_2024_102941
crossref_primary_10_3390_info12070278
Cites_doi 10.1007/s10514-012-9321-0
10.1109/CVPR.2017.16
10.1109/IROS.2013.6696581
10.1109/COASE.2017.8256195
10.1109/ICAR.2011.6088647
10.1109/IROS.2017.8206162
10.1109/LRA.2018.2853639
10.1109/IROS.2015.7353420
10.15607/RSS.2015.XI.001
10.1109/ICRA.2012.6225052
10.1109/cvpr.2015.7298801
10.1109/IROS.2017.8206484
10.1109/3DV.2017.00042
10.1109/LRA.2019.2894439
10.1109/ROMAN.2014.6926343
10.1109/TASE.2015.2396014
10.1109/ICRA.2012.6224678
10.1109/IROS.2007.4399052
10.1109/HUMANOIDS.2016.7803382
10.1109/TAMD.2010.2069098
10.1109/TRO.2015.2409912
10.1109/IROS.2013.6697218
10.1109/ICRA.2013.6630635
10.1109/ICRA.2018.8460902
10.1109/IROS.2018.8593617
10.1109/LRA.2019.2930364
10.1007/s10514-014-9391-2
10.1142/S0219843616500286
10.1109/ROBOT.2007.364200
10.1109/HUMANOIDS.2017.8239542
10.1007/s10514-018-9787-5
10.1109/TAMD.2015.2488284
10.1016/j.robot.2011.07.021
10.1145/2508363.2508393
10.1109/ICRA.2015.7139369
10.1109/IROS40897.2019.8967992
10.1007/s10514-018-9784-8
10.1109/ICRA.2019.8793796
10.1177/0278364917735594
10.1109/REM.2018.8421780
10.1145/1531326.1531379
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.3003883
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4702
ExternalDocumentID 10_1109_LRA_2020_3003883
9121693
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-846bfcda838a61611a010c443b1b31d3fb2a2d3670d1f2ab4201e0321207842d3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545428400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 15:33:10 EDT 2025
Sat Nov 29 06:03:07 EST 2025
Tue Nov 18 22:36:03 EST 2025
Wed Aug 27 02:32:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-846bfcda838a61611a010c443b1b31d3fb2a2d3670d1f2ab4201e0321207842d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2498-932X
0000-0002-1262-6348
PQID 2419495886
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2419495886
ieee_primary_9121693
crossref_citationtrail_10_1109_LRA_2020_3003883
crossref_primary_10_1109_LRA_2020_3003883
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1007/s10514-012-9321-0
– ident: ref2
  doi: 10.1109/CVPR.2017.16
– ident: ref28
  doi: 10.1109/IROS.2013.6696581
– ident: ref29
  doi: 10.1109/COASE.2017.8256195
– ident: ref34
  doi: 10.1109/ICAR.2011.6088647
– ident: ref16
  doi: 10.1109/IROS.2017.8206162
– ident: ref20
  doi: 10.1109/LRA.2018.2853639
– ident: ref9
  doi: 10.1109/IROS.2015.7353420
– ident: ref37
  doi: 10.15607/RSS.2015.XI.001
– ident: ref6
  doi: 10.1109/ICRA.2012.6225052
– ident: ref41
  doi: 10.1109/cvpr.2015.7298801
– ident: ref25
  doi: 10.1109/IROS.2017.8206484
– ident: ref40
  doi: 10.1109/3DV.2017.00042
– ident: ref11
  doi: 10.1109/LRA.2019.2894439
– ident: ref35
  doi: 10.1109/ROMAN.2014.6926343
– ident: ref8
  doi: 10.1109/TASE.2015.2396014
– ident: ref5
  doi: 10.1109/ICRA.2012.6224678
– ident: ref33
  doi: 10.1109/IROS.2007.4399052
– ident: ref3
  doi: 10.1109/HUMANOIDS.2016.7803382
– ident: ref23
  doi: 10.1109/TAMD.2010.2069098
– ident: ref14
  doi: 10.1109/TRO.2015.2409912
– ident: ref7
  doi: 10.1109/IROS.2013.6697218
– ident: ref27
  doi: 10.1109/ICRA.2013.6630635
– ident: ref26
  doi: 10.1109/ICRA.2018.8460902
– ident: ref21
  doi: 10.1109/IROS.2018.8593617
– ident: ref22
  doi: 10.1109/LRA.2019.2930364
– ident: ref24
  doi: 10.1007/s10514-014-9391-2
– ident: ref12
  doi: 10.1142/S0219843616500286
– ident: ref31
  doi: 10.1109/ROBOT.2007.364200
– ident: ref10
  doi: 10.1109/HUMANOIDS.2017.8239542
– ident: ref18
  doi: 10.1007/s10514-018-9787-5
– ident: ref15
  doi: 10.1109/TAMD.2015.2488284
– ident: ref32
  doi: 10.1016/j.robot.2011.07.021
– ident: ref1
  doi: 10.1145/2508363.2508393
– ident: ref19
  doi: 10.1109/ICRA.2015.7139369
– ident: ref13
  doi: 10.1109/IROS40897.2019.8967992
– ident: ref4
  doi: 10.1007/s10514-018-9784-8
– ident: ref30
  doi: 10.1109/ICRA.2019.8793796
– ident: ref38
  doi: 10.1177/0278364917735594
– ident: ref17
  doi: 10.1109/REM.2018.8421780
– ident: ref39
  doi: 10.1145/1531326.1531379
SSID ssj0001527395
Score 2.2363448
Snippet This work presents an approach for part-based grasp planning in point clouds. A complete pipeline is proposed that allows a robot manipulator equipped with a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4695
SubjectTerms Algorithms
Cameras
Classification
Grasping
Grasping (robotics)
Image segmentation
Labels
object detection
Object recognition
Perception for grasping and manipulation
Planning
Robot arms
Robots
segmentation and categorization
semantic scene understanding
Three-dimensional displays
Two dimensional analysis
Two dimensional displays
Title Point Cloud Projective Analysis for Part-Based Grasp Planning
URI https://ieeexplore.ieee.org/document/9121693
https://www.proquest.com/docview/2419495886
Volume 5
WOSCitedRecordID wos000545428400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYrSUHL4Kxye4m3T14qKXVQy1BFHoL2UehUJrSh0d_u7N5VEURvAWyG8Ls7M58MzvfAFwJTXwZSuKajvFcRrl0BUuIqxRH9QhkEJqMXX_YGY34eCyiCtxsa2GMMdnlM3NrH7Ncvk7VxobK2sInljukCtVOJ8xrtT7jKZZJTARlJtIT7eFzF_EfQVhq01-cfrM8WSuVH-dvZlQGB__7nUPYL5xHp5uv9hFUzPwY9r5QCtbhLkqn87XTm6Ub7UR5mAUPNKckH3HQSXUi1Bf3Hu2Xdh6WyWrhlK2LTuB10H_pPbpFiwRXEeGvXfQe5ETphFOehOi8-QniK8UYlb6kvqYTSRKiLUmb9ickkQztvfEo2it0DRi-OYXaPJ2bM1u8zT2WCMvfN2HS4g6qNTUBVYjZOAsa0C7FF6uCP9y2sZjFGY7wRIwCj63A40LgDbjezljk3Bl_jK1bAW_HFbJtQLNcobjYXKsYnQ6BuI7z8Pz3WRewa7-d36ptQm293JhL2FFv6-lq2YLq03u_lWnPB_tBv0s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgRTA22d20uwcPWqwVYwlSobeQfRQKpS19-PudzaMqiuAtkF0Svn3MfLM73wBcCk182ZDENU3juYxy6QqWEFcpjtMjkEHDpOr6YbPb5f2-iEpwvcqFMcakl8_MjX1Mz_L1RC1tqKwufGK1Q9ZgPWCMeFm21mdExWqJiaA4i_REPXy9QwZIkJjaAzBOv9metJjKjx04NSvt3f_90B7s5O6jc5eN9z6UzPgAtr-IClbgNpoMxwunNZostRNlgRbc0pxCfsRBN9WJcMa492jBtPM4S-ZTpyhedAhv7Ydeq-PmRRJcRYS_cNF_kAOlE0550kD3zU-QYSnGqPQl9TUdSJIQbWXatD8giUTcfONRtFjoHDB8cwTl8WRsjm36NvdYIqyC34BJyzyo1tQEVCFr4yyoQr2AL1a5grgtZDGKUybhiRgBjy3gcQ54Fa5WPaaZesYfbSsW4FW7HNsq1IoRivPlNY_R7RDI7DhvnPze6wI2O72XMA6fus-nsGW_k92xrUF5MVuaM9hQ74vhfHaezqEPlJPBYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Point+Cloud+Projective+Analysis+for+Part-Based+Grasp+Planning&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Monica%2C+Riccardo&rft.au=Aleotti%2C+Jacopo&rft.date=2020-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=3&rft.spage=4695&rft.epage=4702&rft_id=info:doi/10.1109%2FLRA.2020.3003883&rft.externalDocID=9121693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon