A Framework for Robot Self-Assessment of Expected Task Performance

We propose a self-assessment framework which enables a robot to estimate how well it will be able to perform a known or possibly novel task. The robot simulates the task to generate a state distribution of possible outcomes and determines (1) the likelihood of overall success, (2) the most probable...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 7; číslo 4; s. 1 - 8
Hlavní autoři: Frasca, Tyler, Scheutz, Matthias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a self-assessment framework which enables a robot to estimate how well it will be able to perform a known or possibly novel task. The robot simulates the task to generate a state distribution of possible outcomes and determines (1) the likelihood of overall success, (2) the most probable failure location, and (3) the expected time to task completion. We evaluate the framework on the "FetchIt!" mobile manipulation challenge which requires the robot to fetch a variety of parts around a small enclosed arena. By comparing the simulated and actual task resulting state distributions, we show that the robot can effectively assess its expected performance which can be communicated to humans.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2022.3219024