Separable Codes for the Symmetric Multiple-Access Channel
A binary matrix is called an <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>- separable code for the disjunctive multiple-access channel ( disj-MAC ) if Boolean sums of sets of <inline-formula> <tex-math notation="LaTeX&quo...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 65; no. 6; pp. 3738 - 3750 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A binary matrix is called an <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>- separable code for the disjunctive multiple-access channel ( disj-MAC ) if Boolean sums of sets of <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula> columns are all distinct. The well-known issue of the combinatorial coding theory is to obtain upper and lower bounds on the rate of <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>-separable codes for the <inline-formula> <tex-math notation="LaTeX">{disj} </tex-math></inline-formula>-MAC. In our paper, we generalize the problem and discuss upper and lower bounds on the rate of <inline-formula> <tex-math notation="LaTeX">{q} </tex-math></inline-formula>-ary <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula>-separable codes for the models of noiseless symmetric MAC, i.e., at each time instant the output signal of MAC is a symmetric function of its <inline-formula> <tex-math notation="LaTeX">{s} </tex-math></inline-formula> input signals. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2019.2893234 |