Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution

Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 72; číslo 3; s. 1 - 12
Hlavní autori: Gao, Jian, Kuang, Zhufang, Gao, Jie, Zhao, Lian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading, task scheduling, and resource allocation in VEC, and the fast changing channel between a vehicle and an edge server. A target problem of joint considering task offloading scheduling, resource allocation and time-varying channel in VEC is formulated. The goal is to minimize the delay and energy consumption of tasks to guarantee the Quality of Service (QoS) of VEC. Constraints on the completion time, the energy consumption, and the computing capability are considered for each task. The resulting mixed integer optimization problem is decomposed into a two-layer optimization problem. In the upper layer, we use a Deep Q-Network (DQN) to solve the task offloading scheduling problem. In the lower level, the CPU frequency allocation is determined using the Gradient Descent (GD) method. Numerical results illustrate that the proposed algorithm can minimize the delay and energy consumption of VEC for different network parameter settings.
AbstractList Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading, task scheduling, and resource allocation in VEC, and the fast changing channel between a vehicle and an edge server. A target problem of joint considering task offloading scheduling, resource allocation and time-varying channel in VEC is formulated. The goal is to minimize the delay and energy consumption of tasks to guarantee the Quality of Service (QoS) of VEC. Constraints on the completion time, the energy consumption, and the computing capability are considered for each task. The resulting mixed integer optimization problem is decomposed into a two-layer optimization problem. In the upper layer, we use a Deep Q-Network (DQN) to solve the task offloading scheduling problem. In the lower level, the CPU frequency allocation is determined using the Gradient Descent (GD) method. Numerical results illustrate that the proposed algorithm can minimize the delay and energy consumption of VEC for different network parameter settings.
Author Kuang, Zhufang
Gao, Jie
Zhao, Lian
Gao, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Gao
  fullname: Gao, Jian
  organization: School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
– sequence: 2
  givenname: Zhufang
  orcidid: 0000-0002-1445-3217
  surname: Kuang
  fullname: Kuang, Zhufang
  organization: School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0001-6095-2968
  surname: Gao
  fullname: Gao, Jie
  organization: School of Information Technology, Carleton University, Ottawa, ON, Canada
– sequence: 4
  givenname: Lian
  orcidid: 0000-0002-5602-1738
  surname: Zhao
  fullname: Zhao, Lian
  organization: Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, ON, Canada
BookMark eNp9kEtrAjEQgEOxULW9F3oJ9Lw2r32kNxH7QhDq1usSklmNrBub3aX475ut0kMPPc0MzDePb4QGtasBoVtKJpQS-ZCv8wkjjE04YyRO6QUaUsllJHksB2hICM0iGYv4Co2aZhdKISQdInhztm7xsiwrp4ytN3ilt2C6qk9VbfA7NK7zGvC0qpxWrXU1tjVew9bqrlIez80G8MztD10bmEc8xfmXwwt1BI9Xrup64hpdlqpq4OYcx-jjaZ7PXqLF8vl1Nl1EmknaRhkjQqYGpNZcKKk4h4RnMaTMZBoMpyJWcUklyWiiUpbqpDRaEOAkvKwN4WN0f5p78O6zg6YtduH4OqwsWJolMs0kTUMXOXVp75rGQ1kcvN0rfywoKXqZRZBZ9DKLs8yAJH8QbdsfGa1XtvoPvDuBFgB-90gpGBcJ_wY73IL5
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TITS_2023_3276823
crossref_primary_10_1109_TNSM_2024_3456568
crossref_primary_10_1109_TMC_2024_3419016
crossref_primary_10_1049_cmu2_70017
crossref_primary_10_1109_TMC_2024_3354056
crossref_primary_10_1109_TPDS_2024_3469545
crossref_primary_10_1016_j_adhoc_2024_103497
crossref_primary_10_1109_JIOT_2023_3344570
crossref_primary_10_1109_TWC_2023_3322680
crossref_primary_10_3390_electronics12193991
crossref_primary_10_1109_ACCESS_2024_3440000
crossref_primary_10_1002_cpe_8050
crossref_primary_10_1109_ACCESS_2023_3324718
crossref_primary_10_1109_TVT_2024_3458973
crossref_primary_10_1016_j_dcan_2025_07_002
crossref_primary_10_1109_JIOT_2023_3289994
crossref_primary_10_1109_TITS_2025_3549111
crossref_primary_10_3390_electronics13081511
crossref_primary_10_1109_TR_2024_3399389
crossref_primary_10_1109_TVT_2025_3525980
crossref_primary_10_3390_s24061863
crossref_primary_10_1109_JSAC_2023_3310058
crossref_primary_10_1109_JIOT_2025_3525612
crossref_primary_10_1109_TIV_2023_3321679
crossref_primary_10_1109_TVT_2025_3552922
crossref_primary_10_1109_TGCN_2023_3349273
crossref_primary_10_1109_TVT_2024_3416205
crossref_primary_10_32604_cmc_2023_038417
crossref_primary_10_1109_TSC_2023_3332140
crossref_primary_10_1016_j_cosrev_2024_100656
crossref_primary_10_1016_j_aeue_2025_155947
crossref_primary_10_1109_TMC_2024_3442909
crossref_primary_10_1109_JIOT_2023_3345853
crossref_primary_10_1109_TVT_2024_3394150
crossref_primary_10_1093_comjnl_bxaf054
crossref_primary_10_1109_JIOT_2025_3577449
crossref_primary_10_1109_TVT_2023_3298599
crossref_primary_10_1186_s13677_023_00503_w
crossref_primary_10_4018_IJDCF_349133
crossref_primary_10_3390_pr12071328
crossref_primary_10_1109_JIOT_2025_3586896
crossref_primary_10_1109_MNET_2024_3449288
crossref_primary_10_3390_electronics12112533
Cites_doi 10.1109/TCSS.2021.3074949
10.1109/JIOT.2021.3100117
10.1109/TWC.2020.3024538
10.1109/TITS.2021.3056461
10.1109/TVT.2019.2959410
10.1109/TVT.2020.2997685
10.1109/TVT.2020.3004118
10.1109/TVT.2022.3144654
10.1109/JSAC.2016.2605958
10.1109/JIOT.2020.3004500
10.1109/TMC.2020.3025116
10.1109/TII.2020.2987994
10.1109/TCCN.2020.3003036
10.1109/TVT.2020.2996254
10.1109/TWC.2015.2464806
10.1109/TVT.2020.2989455
10.1109/TVT.2020.2965159
10.1109/TVT.2015.2424372
10.1109/TVT.2020.2999617
10.1109/JPROC.2019.2918951
10.1109/TWC.2021.3108641
10.1109/TVT.2020.3003898
10.1109/JIOT.2020.2978830
10.1109/JIOT.2019.2911455
10.1109/TVT.2021.3101298
10.1109/COMST.2019.2943405
10.1109/TVT.2020.2967882
10.1109/TITS.2019.2958352
10.1109/JIOT.2020.2982292
10.1109/JIOT.2020.3028368
10.1109/JIOT.2020.2983660
10.1109/JPROC.2019.2961937
10.1109/TVT.2021.3062653
10.1109/TVT.2021.3139843
10.1109/TNSE.2021.3067454
10.23919/JCIN.2021.9549118
10.1109/JIOT.2021.3116108
10.1109/JSYST.2020.3017710
10.1109/COMST.2020.2970550
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3220571
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 12
ExternalDocumentID 10_1109_TVT_2022_3220571
9942346
Genre orig-research
GrantInformation_xml – fundername: Hunan Key Laboratory of Intelligent Logistics Technology
  grantid: 2019TP1015
– fundername: National Natural Science Foundation of China
  grantid: 62072477; 62071398; 61702562; 61309027
– fundername: Hunan Provincial Natural Science Foundation of China
  grantid: 2018JJ3888
– fundername: Scientific Research Fund of Hunan Provincial Education Department
  grantid: 18B197
– fundername: National Key R&D Program of China
  grantid: 2018YFB1700200
– fundername: Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: RGPIN-2020-04678
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
AARMG
ABAZT
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-820497de9cc34a9a33e6385e72d8ced3145a5f190816a727c6fdc40e30205cd03
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966827000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:11:14 EDT 2025
Tue Nov 18 21:59:36 EST 2025
Sat Nov 29 02:59:07 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-820497de9cc34a9a33e6385e72d8ced3145a5f190816a727c6fdc40e30205cd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6095-2968
0000-0002-5602-1738
0000-0002-1445-3217
PQID 2786978917
PQPubID 85454
PageCount 12
ParticipantIDs crossref_primary_10_1109_TVT_2022_3220571
ieee_primary_9942346
crossref_citationtrail_10_1109_TVT_2022_3220571
proquest_journals_2786978917
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Gao (ref36) 2021
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref14
  doi: 10.1109/TCSS.2021.3074949
– ident: ref18
  doi: 10.1109/JIOT.2021.3100117
– ident: ref31
  doi: 10.1109/TWC.2020.3024538
– ident: ref28
  doi: 10.1109/TITS.2021.3056461
– ident: ref9
  doi: 10.1109/TVT.2019.2959410
– volume-title: Proc. IEEE 94th Veh. Technol. Conf. Workshop Auton. Veh. Netw.
  year: 2021
  ident: ref36
  article-title: Task offloading scheduling and resource allocation in vehicular edge computing
– ident: ref15
  doi: 10.1109/TVT.2020.2997685
– ident: ref39
  doi: 10.1109/TVT.2020.3004118
– ident: ref13
  doi: 10.1109/TVT.2022.3144654
– ident: ref37
  doi: 10.1109/JSAC.2016.2605958
– ident: ref3
  doi: 10.1109/JIOT.2020.3004500
– ident: ref33
  doi: 10.1109/TMC.2020.3025116
– ident: ref6
  doi: 10.1109/TII.2020.2987994
– ident: ref12
  doi: 10.1109/TCCN.2020.3003036
– ident: ref17
  doi: 10.1109/TVT.2020.2996254
– ident: ref38
  doi: 10.1109/TWC.2015.2464806
– ident: ref7
  doi: 10.1109/TVT.2020.2989455
– ident: ref8
  doi: 10.1109/TVT.2020.2965159
– ident: ref25
  doi: 10.1109/TVT.2015.2424372
– ident: ref11
  doi: 10.1109/TVT.2020.2999617
– ident: ref2
  doi: 10.1109/JPROC.2019.2918951
– ident: ref19
  doi: 10.1109/TWC.2021.3108641
– ident: ref16
  doi: 10.1109/TVT.2020.3003898
– ident: ref27
  doi: 10.1109/TMC.2020.3025116
– ident: ref23
  doi: 10.1109/JIOT.2020.2978830
– ident: ref29
  doi: 10.1109/JIOT.2019.2911455
– ident: ref30
  doi: 10.1109/TVT.2021.3101298
– ident: ref34
  doi: 10.1109/COMST.2019.2943405
– ident: ref35
  doi: 10.1109/TVT.2020.2967882
– ident: ref4
  doi: 10.1109/TITS.2019.2958352
– ident: ref10
  doi: 10.1109/JIOT.2020.2982292
– ident: ref1
  doi: 10.1109/JIOT.2020.3028368
– ident: ref24
  doi: 10.1109/JIOT.2020.2983660
– ident: ref5
  doi: 10.1109/JPROC.2019.2961937
– ident: ref26
  doi: 10.1109/TVT.2021.3062653
– ident: ref22
  doi: 10.1109/TVT.2021.3139843
– ident: ref41
  doi: 10.1109/TNSE.2021.3067454
– ident: ref32
  doi: 10.23919/JCIN.2021.9549118
– ident: ref20
  doi: 10.1109/JIOT.2021.3116108
– ident: ref21
  doi: 10.1109/JSYST.2020.3017710
– ident: ref40
  doi: 10.1109/COMST.2020.2970550
SSID ssj0014491
Score 2.5754166
Snippet Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Completion time
Computation offloading
Deep Q-Network
Delay
Delays
Edge computing
Energy consumption
Gradient Descent
Mixed integer
offloading scheduling
Optimization
Processor scheduling
Resource allocation
Resource management
Resource scheduling
Scheduling
Servers
Task analysis
Task scheduling
time-varying channel
Vehicular edge computing
Title Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution
URI https://ieeexplore.ieee.org/document/9942346
https://www.proquest.com/docview/2786978917
Volume 72
WOSCitedRecordID wos000966827000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB108aAHv8XVVXLwIli3bdKm8baIIiIquIq30iZTXVhaWVf9-07SdlEUwVsPGWj7Op03ycw8gAOd87wojPBMhL4nciW8vBCRp5U0Ktc8wFw7sQl5fZ08PqrbOTia9cIgois-w2N76c7yTaXf7FZZXykK_iKeh3kp47pXa3ZiIESjjheQAxMtaI8kfdUfPgwpEQzDY267SmXwLQQ5TZUfP2IXXc5X_ndfq7DcsEg2qGFfgzks12Hpy2zBDcDLalRO2U1RjCtXJ8_uCB9jC8-fWFYa1m7cs8HYBjQLEBuV7AGfR642lZ2ZJ2S16gPZnLABG35U7Cojks7a3bRNuD8_G55eeI2mgqdDFUw9CviCYEClNReZyjhH8sAIZWgSjYYHIsqiglhCEsQZcRsdF0YLHznRykgbn29Bp6xK3AZG5I3bAWhCIj0_Uu5GbCahBCSUUmcy60K_fc2pbgaOW92LceoSD1-lBExqgUkbYLpwOLN4qYdt_LF2wwIxW9dg0IVei2TaeONrGsokpmyZMtOd3612YdHKyNe1ZT3oTCdvuAcL-n06ep3suw_tEyPzz6o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5RAEJ7U1kR9sD-NV1vdB19MSg_YhWV9uzTXtHo9TcRL3wjsDpXkAqal-u93doFLjU2TvvGwkwAfw3yzOzMfwEdd8KIsjfBMhL4nCiW8ohSRp5U0qtA8wEI7sQk5nyeXl-r7GhytemEQ0RWf4bG9dGf5ptG3dqtsrBQFfxE_g41IiNDvurVWZwZC9Pp4AbkwEYPhUNJX43SRUioYhsfc9pXK4J8g5FRV_vsVu_hyuvm0O9uC1z2PZJMO-G1Yw3oHXt2bLrgL-KWp6pZ9K8tl4yrl2Q9CyNjS8yuW14YNW_dssrQhzULEqpot8FflqlPZ1Fwh63QfyOYzm7D0b8NmOdF0Nuyn7cHP02l6cub1qgqeDlXQehTyBQGBSmsucpVzjuSDEcrQJBoND0SURyXxhCSIc2I3Oi6NFj5yIpaRNj5_A-t1U-NbYETfuB2BJiTS8yNlb8RnEkpBQil1LvMRjIfXnOl-5LhVvlhmLvXwVUbAZBaYrAdmBJ9WFr-7cRuPrN21QKzW9RiM4GBAMuv98SYLZRJTvky56f7DVh_gxVl6Mctm5_Ov7-ClFZXvKs0OYL29vsVDeK7_tNXN9Xv30d0BHVvS8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Offloading+Scheduling+and+Resource+Allocation+in+Vehicular+Edge+Computing%3A+A+Two+Layer+Solution&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Gao%2C+Jian&rft.au=Kuang%2C+Zhufang&rft.au=Gao%2C+Jie&rft.au=Zhao%2C+Lian&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=3&rft.spage=3999&rft_id=info:doi/10.1109%2FTVT.2022.3220571&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon