Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution
Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading,...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 72; číslo 3; s. 1 - 12 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading, task scheduling, and resource allocation in VEC, and the fast changing channel between a vehicle and an edge server. A target problem of joint considering task offloading scheduling, resource allocation and time-varying channel in VEC is formulated. The goal is to minimize the delay and energy consumption of tasks to guarantee the Quality of Service (QoS) of VEC. Constraints on the completion time, the energy consumption, and the computing capability are considered for each task. The resulting mixed integer optimization problem is decomposed into a two-layer optimization problem. In the upper layer, we use a Deep Q-Network (DQN) to solve the task offloading scheduling problem. In the lower level, the CPU frequency allocation is determined using the Gradient Descent (GD) method. Numerical results illustrate that the proposed algorithm can minimize the delay and energy consumption of VEC for different network parameter settings. |
|---|---|
| AbstractList | Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task offloading scheduling and resource allocation in VEC is a challenge issue. In this paper, we investigate the problem of joint task offloading, task scheduling, and resource allocation in VEC, and the fast changing channel between a vehicle and an edge server. A target problem of joint considering task offloading scheduling, resource allocation and time-varying channel in VEC is formulated. The goal is to minimize the delay and energy consumption of tasks to guarantee the Quality of Service (QoS) of VEC. Constraints on the completion time, the energy consumption, and the computing capability are considered for each task. The resulting mixed integer optimization problem is decomposed into a two-layer optimization problem. In the upper layer, we use a Deep Q-Network (DQN) to solve the task offloading scheduling problem. In the lower level, the CPU frequency allocation is determined using the Gradient Descent (GD) method. Numerical results illustrate that the proposed algorithm can minimize the delay and energy consumption of VEC for different network parameter settings. |
| Author | Kuang, Zhufang Gao, Jie Zhao, Lian Gao, Jian |
| Author_xml | – sequence: 1 givenname: Jian surname: Gao fullname: Gao, Jian organization: School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China – sequence: 2 givenname: Zhufang orcidid: 0000-0002-1445-3217 surname: Kuang fullname: Kuang, Zhufang organization: School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China – sequence: 3 givenname: Jie orcidid: 0000-0001-6095-2968 surname: Gao fullname: Gao, Jie organization: School of Information Technology, Carleton University, Ottawa, ON, Canada – sequence: 4 givenname: Lian orcidid: 0000-0002-5602-1738 surname: Zhao fullname: Zhao, Lian organization: Department of Electrical, Computer and Biomedical Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, ON, Canada |
| BookMark | eNp9kEtrAjEQgEOxULW9F3oJ9Lw2r32kNxH7QhDq1usSklmNrBub3aX475ut0kMPPc0MzDePb4QGtasBoVtKJpQS-ZCv8wkjjE04YyRO6QUaUsllJHksB2hICM0iGYv4Co2aZhdKISQdInhztm7xsiwrp4ytN3ilt2C6qk9VbfA7NK7zGvC0qpxWrXU1tjVew9bqrlIez80G8MztD10bmEc8xfmXwwt1BI9Xrup64hpdlqpq4OYcx-jjaZ7PXqLF8vl1Nl1EmknaRhkjQqYGpNZcKKk4h4RnMaTMZBoMpyJWcUklyWiiUpbqpDRaEOAkvKwN4WN0f5p78O6zg6YtduH4OqwsWJolMs0kTUMXOXVp75rGQ1kcvN0rfywoKXqZRZBZ9DKLs8yAJH8QbdsfGa1XtvoPvDuBFgB-90gpGBcJ_wY73IL5 |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3276823 crossref_primary_10_1109_TNSM_2024_3456568 crossref_primary_10_1109_TMC_2024_3419016 crossref_primary_10_1049_cmu2_70017 crossref_primary_10_1109_TMC_2024_3354056 crossref_primary_10_1109_TPDS_2024_3469545 crossref_primary_10_1016_j_adhoc_2024_103497 crossref_primary_10_1109_JIOT_2023_3344570 crossref_primary_10_1109_TWC_2023_3322680 crossref_primary_10_3390_electronics12193991 crossref_primary_10_1109_ACCESS_2024_3440000 crossref_primary_10_1002_cpe_8050 crossref_primary_10_1109_ACCESS_2023_3324718 crossref_primary_10_1109_TVT_2024_3458973 crossref_primary_10_1016_j_dcan_2025_07_002 crossref_primary_10_1109_JIOT_2023_3289994 crossref_primary_10_1109_TITS_2025_3549111 crossref_primary_10_3390_electronics13081511 crossref_primary_10_1109_TR_2024_3399389 crossref_primary_10_1109_TVT_2025_3525980 crossref_primary_10_3390_s24061863 crossref_primary_10_1109_JSAC_2023_3310058 crossref_primary_10_1109_JIOT_2025_3525612 crossref_primary_10_1109_TIV_2023_3321679 crossref_primary_10_1109_TVT_2025_3552922 crossref_primary_10_1109_TGCN_2023_3349273 crossref_primary_10_1109_TVT_2024_3416205 crossref_primary_10_32604_cmc_2023_038417 crossref_primary_10_1109_TSC_2023_3332140 crossref_primary_10_1016_j_cosrev_2024_100656 crossref_primary_10_1016_j_aeue_2025_155947 crossref_primary_10_1109_TMC_2024_3442909 crossref_primary_10_1109_JIOT_2023_3345853 crossref_primary_10_1109_TVT_2024_3394150 crossref_primary_10_1093_comjnl_bxaf054 crossref_primary_10_1109_JIOT_2025_3577449 crossref_primary_10_1109_TVT_2023_3298599 crossref_primary_10_1186_s13677_023_00503_w crossref_primary_10_4018_IJDCF_349133 crossref_primary_10_3390_pr12071328 crossref_primary_10_1109_JIOT_2025_3586896 crossref_primary_10_1109_MNET_2024_3449288 crossref_primary_10_3390_electronics12112533 |
| Cites_doi | 10.1109/TCSS.2021.3074949 10.1109/JIOT.2021.3100117 10.1109/TWC.2020.3024538 10.1109/TITS.2021.3056461 10.1109/TVT.2019.2959410 10.1109/TVT.2020.2997685 10.1109/TVT.2020.3004118 10.1109/TVT.2022.3144654 10.1109/JSAC.2016.2605958 10.1109/JIOT.2020.3004500 10.1109/TMC.2020.3025116 10.1109/TII.2020.2987994 10.1109/TCCN.2020.3003036 10.1109/TVT.2020.2996254 10.1109/TWC.2015.2464806 10.1109/TVT.2020.2989455 10.1109/TVT.2020.2965159 10.1109/TVT.2015.2424372 10.1109/TVT.2020.2999617 10.1109/JPROC.2019.2918951 10.1109/TWC.2021.3108641 10.1109/TVT.2020.3003898 10.1109/JIOT.2020.2978830 10.1109/JIOT.2019.2911455 10.1109/TVT.2021.3101298 10.1109/COMST.2019.2943405 10.1109/TVT.2020.2967882 10.1109/TITS.2019.2958352 10.1109/JIOT.2020.2982292 10.1109/JIOT.2020.3028368 10.1109/JIOT.2020.2983660 10.1109/JPROC.2019.2961937 10.1109/TVT.2021.3062653 10.1109/TVT.2021.3139843 10.1109/TNSE.2021.3067454 10.23919/JCIN.2021.9549118 10.1109/JIOT.2021.3116108 10.1109/JSYST.2020.3017710 10.1109/COMST.2020.2970550 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2022.3220571 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TVT_2022_3220571 9942346 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Hunan Key Laboratory of Intelligent Logistics Technology grantid: 2019TP1015 – fundername: National Natural Science Foundation of China grantid: 62072477; 62071398; 61702562; 61309027 – fundername: Hunan Provincial Natural Science Foundation of China grantid: 2018JJ3888 – fundername: Scientific Research Fund of Hunan Provincial Education Department grantid: 18B197 – fundername: National Key R&D Program of China grantid: 2018YFB1700200 – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RGPIN-2020-04678 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AASAJ AAWTH ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD AARMG ABAZT FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-820497de9cc34a9a33e6385e72d8ced3145a5f190816a727c6fdc40e30205cd03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966827000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:11:14 EDT 2025 Tue Nov 18 21:59:36 EST 2025 Sat Nov 29 02:59:07 EST 2025 Tue Nov 25 14:44:25 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-820497de9cc34a9a33e6385e72d8ced3145a5f190816a727c6fdc40e30205cd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6095-2968 0000-0002-5602-1738 0000-0002-1445-3217 |
| PQID | 2786978917 |
| PQPubID | 85454 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TVT_2022_3220571 ieee_primary_9942346 crossref_citationtrail_10_1109_TVT_2022_3220571 proquest_journals_2786978917 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Gao (ref36) 2021 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref14 doi: 10.1109/TCSS.2021.3074949 – ident: ref18 doi: 10.1109/JIOT.2021.3100117 – ident: ref31 doi: 10.1109/TWC.2020.3024538 – ident: ref28 doi: 10.1109/TITS.2021.3056461 – ident: ref9 doi: 10.1109/TVT.2019.2959410 – volume-title: Proc. IEEE 94th Veh. Technol. Conf. Workshop Auton. Veh. Netw. year: 2021 ident: ref36 article-title: Task offloading scheduling and resource allocation in vehicular edge computing – ident: ref15 doi: 10.1109/TVT.2020.2997685 – ident: ref39 doi: 10.1109/TVT.2020.3004118 – ident: ref13 doi: 10.1109/TVT.2022.3144654 – ident: ref37 doi: 10.1109/JSAC.2016.2605958 – ident: ref3 doi: 10.1109/JIOT.2020.3004500 – ident: ref33 doi: 10.1109/TMC.2020.3025116 – ident: ref6 doi: 10.1109/TII.2020.2987994 – ident: ref12 doi: 10.1109/TCCN.2020.3003036 – ident: ref17 doi: 10.1109/TVT.2020.2996254 – ident: ref38 doi: 10.1109/TWC.2015.2464806 – ident: ref7 doi: 10.1109/TVT.2020.2989455 – ident: ref8 doi: 10.1109/TVT.2020.2965159 – ident: ref25 doi: 10.1109/TVT.2015.2424372 – ident: ref11 doi: 10.1109/TVT.2020.2999617 – ident: ref2 doi: 10.1109/JPROC.2019.2918951 – ident: ref19 doi: 10.1109/TWC.2021.3108641 – ident: ref16 doi: 10.1109/TVT.2020.3003898 – ident: ref27 doi: 10.1109/TMC.2020.3025116 – ident: ref23 doi: 10.1109/JIOT.2020.2978830 – ident: ref29 doi: 10.1109/JIOT.2019.2911455 – ident: ref30 doi: 10.1109/TVT.2021.3101298 – ident: ref34 doi: 10.1109/COMST.2019.2943405 – ident: ref35 doi: 10.1109/TVT.2020.2967882 – ident: ref4 doi: 10.1109/TITS.2019.2958352 – ident: ref10 doi: 10.1109/JIOT.2020.2982292 – ident: ref1 doi: 10.1109/JIOT.2020.3028368 – ident: ref24 doi: 10.1109/JIOT.2020.2983660 – ident: ref5 doi: 10.1109/JPROC.2019.2961937 – ident: ref26 doi: 10.1109/TVT.2021.3062653 – ident: ref22 doi: 10.1109/TVT.2021.3139843 – ident: ref41 doi: 10.1109/TNSE.2021.3067454 – ident: ref32 doi: 10.23919/JCIN.2021.9549118 – ident: ref20 doi: 10.1109/JIOT.2021.3116108 – ident: ref21 doi: 10.1109/JSYST.2020.3017710 – ident: ref40 doi: 10.1109/COMST.2020.2970550 |
| SSID | ssj0014491 |
| Score | 2.5754166 |
| Snippet | Vehicular Edge Computing (VEC) is a promising paradigm for autonomous driving. It can reduce delay and energy consumption of tasks. The problem of joint task... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Completion time Computation offloading Deep Q-Network Delay Delays Edge computing Energy consumption Gradient Descent Mixed integer offloading scheduling Optimization Processor scheduling Resource allocation Resource management Resource scheduling Scheduling Servers Task analysis Task scheduling time-varying channel Vehicular edge computing |
| Title | Joint Offloading Scheduling and Resource Allocation in Vehicular Edge Computing: A Two Layer Solution |
| URI | https://ieeexplore.ieee.org/document/9942346 https://www.proquest.com/docview/2786978917 |
| Volume | 72 |
| WOSCitedRecordID | wos000966827000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB108aAHv8XVVXLwIli3bdKm8baIIiIquIq30iZTXVhaWVf9-07SdlEUwVsPGWj7Op03ycw8gAOd87wojPBMhL4nciW8vBCRp5U0Ktc8wFw7sQl5fZ08PqrbOTia9cIgois-w2N76c7yTaXf7FZZXykK_iKeh3kp47pXa3ZiIESjjheQAxMtaI8kfdUfPgwpEQzDY267SmXwLQQ5TZUfP2IXXc5X_ndfq7DcsEg2qGFfgzks12Hpy2zBDcDLalRO2U1RjCtXJ8_uCB9jC8-fWFYa1m7cs8HYBjQLEBuV7AGfR642lZ2ZJ2S16gPZnLABG35U7Cojks7a3bRNuD8_G55eeI2mgqdDFUw9CviCYEClNReZyjhH8sAIZWgSjYYHIsqiglhCEsQZcRsdF0YLHznRykgbn29Bp6xK3AZG5I3bAWhCIj0_Uu5GbCahBCSUUmcy60K_fc2pbgaOW92LceoSD1-lBExqgUkbYLpwOLN4qYdt_LF2wwIxW9dg0IVei2TaeONrGsokpmyZMtOd3612YdHKyNe1ZT3oTCdvuAcL-n06ep3suw_tEyPzz6o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5RAEJ7U1kR9sD-NV1vdB19MSg_YhWV9uzTXtHo9TcRL3wjsDpXkAqal-u93doFLjU2TvvGwkwAfw3yzOzMfwEdd8KIsjfBMhL4nCiW8ohSRp5U0qtA8wEI7sQk5nyeXl-r7GhytemEQ0RWf4bG9dGf5ptG3dqtsrBQFfxE_g41IiNDvurVWZwZC9Pp4AbkwEYPhUNJX43SRUioYhsfc9pXK4J8g5FRV_vsVu_hyuvm0O9uC1z2PZJMO-G1Yw3oHXt2bLrgL-KWp6pZ9K8tl4yrl2Q9CyNjS8yuW14YNW_dssrQhzULEqpot8FflqlPZ1Fwh63QfyOYzm7D0b8NmOdF0Nuyn7cHP02l6cub1qgqeDlXQehTyBQGBSmsucpVzjuSDEcrQJBoND0SURyXxhCSIc2I3Oi6NFj5yIpaRNj5_A-t1U-NbYETfuB2BJiTS8yNlb8RnEkpBQil1LvMRjIfXnOl-5LhVvlhmLvXwVUbAZBaYrAdmBJ9WFr-7cRuPrN21QKzW9RiM4GBAMuv98SYLZRJTvky56f7DVh_gxVl6Mctm5_Ov7-ClFZXvKs0OYL29vsVDeK7_tNXN9Xv30d0BHVvS8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Offloading+Scheduling+and+Resource+Allocation+in+Vehicular+Edge+Computing%3A+A+Two+Layer+Solution&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Gao%2C+Jian&rft.au=Kuang%2C+Zhufang&rft.au=Gao%2C+Jie&rft.au=Zhao%2C+Lian&rft.date=2023-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=72&rft.issue=3&rft.spage=3999&rft_id=info:doi/10.1109%2FTVT.2022.3220571&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |