Multi-Agent Deep Reinforcement Learning for Voltage Control With Coordinated Active and Reactive Power Optimization

The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on smart grid Ročník 13; číslo 6; s. 4873 - 4886
Hlavní autori: Hu, Daner, Ye, Zhenhui, Gao, Yuanqi, Ye, Zuzhao, Peng, Yonggang, Yu, Nanpeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1949-3053, 1949-3061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mitigating the voltage excursions. This paper proposes a two-timescale hybrid voltage control strategy based on a mixed-integer optimization method and multi-agent reinforcement learning (MARL) to reduce power loss and mitigate voltage violations. In the slow-timescale, the active and reactive power optimization problem involving capacitor banks (CBs), on-load tap changers (OLTC), and ES systems is formulated as a mixed-integer second-order cone programming problem. In the fast-timescale, the reactive power of smart inverters connected to solar photovoltaic systems and active power of EVs are adjusted to mitigate short-term voltage fluctuations with a MARL algorithm. Specifically, we propose an experience augmented multi-agent actor-critic (EA-MAAC) algorithm with an attention mechanism to learn high-quality control policies. The control policies are executed online in a decentralized manner. The proposed hybrid voltage control strategy is validated on an IEEE testing distribution feeder. The numerical results show that our proposed control strategy is not only sample-efficient and robust but also effective in mitigating voltage fluctuations.
AbstractList The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mitigating the voltage excursions. This paper proposes a two-timescale hybrid voltage control strategy based on a mixed-integer optimization method and multi-agent reinforcement learning (MARL) to reduce power loss and mitigate voltage violations. In the slow-timescale, the active and reactive power optimization problem involving capacitor banks (CBs), on-load tap changers (OLTC), and ES systems is formulated as a mixed-integer second-order cone programming problem. In the fast-timescale, the reactive power of smart inverters connected to solar photovoltaic systems and active power of EVs are adjusted to mitigate short-term voltage fluctuations with a MARL algorithm. Specifically, we propose an experience augmented multi-agent actor-critic (EA-MAAC) algorithm with an attention mechanism to learn high-quality control policies. The control policies are executed online in a decentralized manner. The proposed hybrid voltage control strategy is validated on an IEEE testing distribution feeder. The numerical results show that our proposed control strategy is not only sample-efficient and robust but also effective in mitigating voltage fluctuations.
Author Yu, Nanpeng
Hu, Daner
Gao, Yuanqi
Ye, Zhenhui
Ye, Zuzhao
Peng, Yonggang
Author_xml – sequence: 1
  givenname: Daner
  orcidid: 0000-0002-9400-2490
  surname: Hu
  fullname: Hu, Daner
  organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Zhenhui
  orcidid: 0000-0002-7105-014X
  surname: Ye
  fullname: Ye, Zhenhui
  organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Yuanqi
  orcidid: 0000-0003-4078-6143
  surname: Gao
  fullname: Gao, Yuanqi
  organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA
– sequence: 4
  givenname: Zuzhao
  orcidid: 0000-0002-0428-662X
  surname: Ye
  fullname: Ye, Zuzhao
  organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA
– sequence: 5
  givenname: Yonggang
  orcidid: 0000-0002-0960-3807
  surname: Peng
  fullname: Peng, Yonggang
  email: pengyg@zju.edu.cn
  organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Nanpeng
  orcidid: 0000-0001-5086-5465
  surname: Yu
  fullname: Yu, Nanpeng
  email: nyu@ece.ucr.edu
  organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA
BookMark eNp9UE1LAzEQDVJBrd4FLwHPWyfJfuVYqlahUvHzuKS7k5qyTWo2VfTXm1rx4MG5zAfz3pt5B6RnnUVCjhkMGAN59nA_HnDgfCBYmcki2yH7TKYyEZCz3m-diT1y1HULiCGEyLncJ93Nug0mGc7RBnqOuKJ3aKx2vsblZjRB5a2xcxpH9Mm1Qc2RjpwN3rX02YSX2DjfGKsCNnRYB_OGVNkm0qhtc-ve0dPpKpil-VTBOHtIdrVqOzz6yX3yeHnxMLpKJtPx9Wg4SWouWUhKANXk8dJcI5YaWAFaNDkHrGtdzLJScKlSrjSroZSS5ZlSYiZSDSXCLEPRJ6db3pV3r2vsQrVwa2-jZMULXkCapiyNW7Ddqr3rOo-6WnmzVP6jYlBt3K2iu9XG3erH3QjJ_0BqE75fC16Z9j_gyRZoEPFXR5aQFbkQX8R0iZY
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_rser_2025_115977
crossref_primary_10_1016_j_swevo_2025_102132
crossref_primary_10_1109_ACCESS_2025_3566587
crossref_primary_10_1109_TSG_2024_3423700
crossref_primary_10_1016_j_epsr_2023_109738
crossref_primary_10_1016_j_rineng_2024_102741
crossref_primary_10_1109_TSTE_2024_3421929
crossref_primary_10_1016_j_apenergy_2024_123870
crossref_primary_10_1016_j_epsr_2025_111580
crossref_primary_10_1049_rpg2_13181
crossref_primary_10_3390_electronics12010214
crossref_primary_10_3390_en18082093
crossref_primary_10_1109_ACCESS_2024_3439015
crossref_primary_10_1186_s42162_024_00382_8
crossref_primary_10_1016_j_ijepes_2023_109761
crossref_primary_10_3390_en17246454
crossref_primary_10_3390_en18154083
crossref_primary_10_1109_TPWRS_2025_3531871
crossref_primary_10_3390_en18071809
crossref_primary_10_1109_TSG_2024_3417294
crossref_primary_10_1049_rpg2_12977
crossref_primary_10_1109_ACCESS_2025_3531492
crossref_primary_10_1109_TII_2023_3333845
crossref_primary_10_3390_ijgi14080300
crossref_primary_10_1016_j_energy_2023_127232
crossref_primary_10_1109_TIA_2025_3531321
crossref_primary_10_3390_s23031618
crossref_primary_10_2478_amns_2024_3041
crossref_primary_10_1016_j_ijhydene_2024_12_141
crossref_primary_10_3390_en18071837
crossref_primary_10_1016_j_apenergy_2023_121743
crossref_primary_10_3389_fenrg_2022_1108698
crossref_primary_10_1016_j_rser_2024_114282
crossref_primary_10_3390_en16207101
crossref_primary_10_1016_j_eswa_2023_121760
crossref_primary_10_1109_JIOT_2025_3569599
crossref_primary_10_1016_j_epsr_2023_109698
crossref_primary_10_1109_TSG_2025_3533958
crossref_primary_10_1049_rpg2_12868
crossref_primary_10_32604_cmc_2024_048771
crossref_primary_10_1016_j_ijepes_2024_109823
crossref_primary_10_1109_TII_2023_3342894
crossref_primary_10_1016_j_apenergy_2025_125993
crossref_primary_10_3390_app13052865
crossref_primary_10_1109_TSTE_2024_3485060
crossref_primary_10_1016_j_renene_2023_119514
crossref_primary_10_1109_TCSI_2023_3340691
crossref_primary_10_1109_TPWRS_2023_3242715
crossref_primary_10_1016_j_energy_2023_126965
crossref_primary_10_1109_TII_2024_3397390
crossref_primary_10_1016_j_ijepes_2024_110148
crossref_primary_10_1109_TPWRS_2023_3347389
crossref_primary_10_1109_TPWRS_2024_3510653
crossref_primary_10_1016_j_epsr_2025_111869
crossref_primary_10_3390_en16031330
crossref_primary_10_1038_s41598_025_08729_1
crossref_primary_10_1109_ACCESS_2025_3584129
crossref_primary_10_1109_TPWRS_2025_3528428
crossref_primary_10_1109_TSG_2025_3547830
crossref_primary_10_1109_TCDS_2023_3339131
crossref_primary_10_1109_ACCESS_2023_3296741
crossref_primary_10_1016_j_segan_2024_101529
crossref_primary_10_1016_j_egyr_2023_05_035
crossref_primary_10_1016_j_segan_2025_101821
crossref_primary_10_1016_j_neucom_2024_128015
crossref_primary_10_3390_app142311112
crossref_primary_10_1016_j_apenergy_2023_121648
crossref_primary_10_1109_OAJPE_2025_3573961
crossref_primary_10_1049_rpg2_13096
crossref_primary_10_1016_j_eswa_2025_129145
Cites_doi 10.1109/TSG.2017.2752234
10.1109/TSG.2020.3010130
10.1109/TPWRS.2020.2990179
10.1016/j.apenergy.2022.118762
10.1109/TSG.2017.2648509
10.1109/CCTA48906.2021.9659162
10.1109/SmartGridComm.2019.8909777
10.1109/TAC.2014.2332712
10.1109/59.119237
10.1109/tia.2017.2740850
10.1109/TSG.2016.2558585
10.1016/j.apenergy.2018.07.065
10.1109/TSG.2014.2329842
10.1109/CACSD.2004.1393890
10.1109/TSTE.2010.2098483
10.1109/tsg.2021.3060027
10.1109/TSG.2021.3058996
10.1109/TPWRS.2018.2813400
10.1109/5.726791
10.1109/61.19266
10.1109/tpwrs.2019.2948132
10.1007/978-3-319-71682-4_5
10.1109/TRA.2002.804040
10.1109/TPWRS.2016.2585202
10.1109/TSG.2019.2962625
10.1609/aaai.v32i1.11492
10.1109/MPER.1989.4310642
10.1109/TSG.2015.2419134
10.1109/TPWRS.2006.879234
10.1109/TPWRS.2013.2256375
10.1109/TII.2021.3050039
10.1109/TNN.1998.712192
10.1109/tsg.2018.2879572
10.1109/ISGT49243.2021.9372283
10.1109/SmartGridComm.2019.8909741
10.1109/TSG.2014.2374613
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2022.3185975
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 4886
ExternalDocumentID 10_1109_TSG_2022_3185975
9805763
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFB0906000; 2020YFB0906002
  funderid: 10.13039/501100012166
– fundername: University of California
  grantid: L22CR4556
  funderid: 10.13039/100005595
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-800ad60336fee8f0170f3d620eccf7b58329a42af1c0899165aa3b34f08e0b5e3
IEDL.DBID RIE
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871062300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:43:01 EDT 2025
Sat Nov 29 03:46:00 EST 2025
Tue Nov 18 20:53:11 EST 2025
Wed Aug 27 02:18:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-800ad60336fee8f0170f3d620eccf7b58329a42af1c0899165aa3b34f08e0b5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0428-662X
0000-0002-0960-3807
0000-0001-5086-5465
0000-0002-9400-2490
0000-0003-4078-6143
0000-0002-7105-014X
PQID 2727044414
PQPubID 2040408
PageCount 14
ParticipantIDs ieee_primary_9805763
crossref_primary_10_1109_TSG_2022_3185975
proquest_journals_2727044414
crossref_citationtrail_10_1109_TSG_2022_3185975
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref37
ref14
ref31
Fujimoto (ref35)
ref30
ref11
Wang (ref36) 2020
ref10
ref2
ref1
ref17
ref39
ref16
Cao (ref24) 2020
ref38
ref19
ref18
Lowe (ref27) 2017
ref23
ref45
ref26
ref25
ref20
Laskin (ref22) 2020
ref41
ref44
ref21
ref43
ref28
Iqbal (ref32); 97
ref29
ref8
ref7
ref9
ref4
ref3
Haarnoja (ref33); 80
ref6
ref5
ref40
(ref42) 2019
Lillicrap (ref34) 2015
References_xml – year: 2020
  ident: ref22
  article-title: Reinforcement learning with augmented data
  publication-title: arXiv:2004.14990
– year: 2020
  ident: ref24
  article-title: Model-free voltage regulation of unbalanced distribution network based on surrogate model and deep reinforcement learning
  publication-title: arXiv:2006.13992
– ident: ref11
  doi: 10.1109/TSG.2017.2752234
– ident: ref15
  doi: 10.1109/TSG.2020.3010130
– ident: ref18
  doi: 10.1109/TPWRS.2020.2990179
– ident: ref26
  doi: 10.1016/j.apenergy.2022.118762
– ident: ref4
  doi: 10.1109/TSG.2017.2648509
– ident: ref5
  doi: 10.1109/CCTA48906.2021.9659162
– ident: ref23
  doi: 10.1109/SmartGridComm.2019.8909777
– volume: 80
  start-page: 1861
  volume-title: Proc. ICML
  ident: ref33
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– ident: ref30
  doi: 10.1109/TAC.2014.2332712
– ident: ref41
  doi: 10.1109/59.119237
– ident: ref2
  doi: 10.1109/tia.2017.2740850
– ident: ref8
  doi: 10.1109/TSG.2016.2558585
– ident: ref43
  doi: 10.1016/j.apenergy.2018.07.065
– ident: ref10
  doi: 10.1109/TSG.2014.2329842
– volume: 97
  start-page: 2961
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref32
  article-title: Actor-attention-critic for multi-agent reinforcement learning
– ident: ref44
  doi: 10.1109/CACSD.2004.1393890
– year: 2017
  ident: ref27
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: arXiv:1706.02275
– ident: ref6
  doi: 10.1109/TSTE.2010.2098483
– ident: ref19
  doi: 10.1109/tsg.2021.3060027
– ident: ref20
  doi: 10.1109/TSG.2021.3058996
– start-page: 1587
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Addressing function approximation error in actor-critic methods
– ident: ref12
  doi: 10.1109/TPWRS.2018.2813400
– ident: ref21
  doi: 10.1109/5.726791
– year: 2020
  ident: ref36
  article-title: Meta-SAC: Auto-tune the entropy temperature of soft actor-critic via metagradient
  publication-title: arXiv:2007.01932
– ident: ref29
  doi: 10.1109/61.19266
– ident: ref25
  doi: 10.1109/tpwrs.2019.2948132
– ident: ref39
  doi: 10.1007/978-3-319-71682-4_5
– ident: ref38
  doi: 10.1109/TRA.2002.804040
– ident: ref7
  doi: 10.1109/TPWRS.2016.2585202
– ident: ref17
  doi: 10.1109/TSG.2019.2962625
– ident: ref37
  doi: 10.1609/aaai.v32i1.11492
– ident: ref40
  doi: 10.1109/MPER.1989.4310642
– ident: ref13
  doi: 10.1109/TSG.2015.2419134
– ident: ref31
  doi: 10.1109/TPWRS.2006.879234
– ident: ref1
  doi: 10.1109/TPWRS.2013.2256375
– ident: ref28
  doi: 10.1109/TII.2021.3050039
– year: 2015
  ident: ref34
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv:1509.02971
– ident: ref45
  doi: 10.1109/TNN.1998.712192
– ident: ref9
  doi: 10.1109/tsg.2018.2879572
– ident: ref14
  doi: 10.1109/ISGT49243.2021.9372283
– ident: ref16
  doi: 10.1109/SmartGridComm.2019.8909741
– volume-title: Web Application-Renewable Ninja
  year: 2019
  ident: ref42
– ident: ref3
  doi: 10.1109/TSG.2014.2374613
SSID ssj0000333629
Score 2.6609156
Snippet The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4873
SubjectTerms Active control
Algorithms
Capacitor banks
Controllability
Costs
Deep learning
Deep reinforcement learning
Electric potential
Electric vehicles
Energy policy
Energy sources
Energy storage
experience augmentation
Inverters
Machine learning
Mixed integer
multi-agent
Multiagent systems
Optimization
Quality control
Reactive power
Reinforcement learning
Robustness (mathematics)
soft actor-critic
Tap changers
Time
Voltage
Voltage control
Voltage fluctuations
Title Multi-Agent Deep Reinforcement Learning for Voltage Control With Coordinated Active and Reactive Power Optimization
URI https://ieeexplore.ieee.org/document/9805763
https://www.proquest.com/docview/2727044414
Volume 13
WOSCitedRecordID wos000871062300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYxAEOvAZivJQDFyS6pUkfy3HieUAw8dytSpsEJo0OsY7fj5N21SQQEremSqIqX-04dj4b4DhVAVOR9D2GwuMFJtWepEyiMgyFyjiXoePCPN_Et7e94VAMluC05sJord3lM92xjy6WrybZzLrKugJnQHloQCOOo5KrVftTKOeoi4ULIgc2nB_yeVSSiu7jwxWeBRnrWLKwsJcKF3YhV1blhy52G8zl-v8-bQPWKkOS9EvkN2FJ51uwupBesAVTx671-pY9Rc61_iD32iVKzZxPkFS5VV8JviLPk3GBuoWclXfXycuoeMMGnk1HOdqjivSdZiQyVziNLBsDW2ON3KHaea_4nNvwdHnxeHbtVUUWvIwJv0BQqFQRrl5ktO4Zm07HcBUxitiaOA1R4oUMmDR-ZiOEfhRKyVMeGNrTNA0134FmPsn1LhA0LYwxKjNG6iBNpZRpLNz4mFLDojZ054ueZFUGclsIY5y4kwgVCcKUWJiSCqY2nNQjPsrsG3_0bVlY6n4VIm04mOOaVOI5TRhabTZRnh_s_T5qH1bs3CXp8ACaxedMH8Jy9lWMpp9H7s_7BpDb19s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgEJ74StSDb-P65ODFxLoUaHc5bnzHdTW6Pm4NLaCbaNe41d_vQLsbE42Jt9IAJXydYWD4ZgB2Uy2YjlUYMBSeQNjUBIoyhcowkjrjXEWeC3PfbnQ6zcdHeT0G-yMujDHGXz4zB-7R-_J1P_twR2V1iT2gPIzDZCQEoyVba3SiQjlHbSy9G1k4h37Eh35JKuvd21PcDTJ24OjC0l0r_LYO-cQqP7SxX2JO5v83uAWYq0xJ0iqxX4Qxky_B7LcAg8sw8PzaoOX4U-TImDdyY3yo1MyfCpIquuoTwVfkvv9SoHYhh-XtdfLQK56xgLvTXo4WqSYtrxuJyjV2o8rCtcuyRq5Q8bxWjM4VuDs57h6eBVWahSBjMiwQFqp0jLMXW2Oa1gXUsVzHjCK6tpFGKPNSCaZsmDkfYRhHSvGUC0ubhqaR4aswkfdzswYEjQtrrc6sVUakqVIqbUjfvkGpZXEN6sNJT7IqBrlLhfGS-L0IlQnClDiYkgqmGuyNWryV8Tf-qLvsYBnVqxCpweYQ16QS0EHC0G5zofJCsf57qx2YPutetpP2eediA2bcd0oK4iZMFO8fZgumss-iN3jf9n_hF_GG2yI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Deep+Reinforcement+Learning+for+Voltage+Control+With+Coordinated+Active+and+Reactive+Power+Optimization&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Hu%2C+Daner&rft.au=Ye%2C+Zhenhui&rft.au=Gao%2C+Yuanqi&rft.au=Ye%2C+Zuzhao&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=13&rft.issue=6&rft.spage=4873&rft_id=info:doi/10.1109%2FTSG.2022.3185975&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon