Multi-Agent Deep Reinforcement Learning for Voltage Control With Coordinated Active and Reactive Power Optimization
The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mi...
Uložené v:
| Vydané v: | IEEE transactions on smart grid Ročník 13; číslo 6; s. 4873 - 4886 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mitigating the voltage excursions. This paper proposes a two-timescale hybrid voltage control strategy based on a mixed-integer optimization method and multi-agent reinforcement learning (MARL) to reduce power loss and mitigate voltage violations. In the slow-timescale, the active and reactive power optimization problem involving capacitor banks (CBs), on-load tap changers (OLTC), and ES systems is formulated as a mixed-integer second-order cone programming problem. In the fast-timescale, the reactive power of smart inverters connected to solar photovoltaic systems and active power of EVs are adjusted to mitigate short-term voltage fluctuations with a MARL algorithm. Specifically, we propose an experience augmented multi-agent actor-critic (EA-MAAC) algorithm with an attention mechanism to learn high-quality control policies. The control policies are executed online in a decentralized manner. The proposed hybrid voltage control strategy is validated on an IEEE testing distribution feeder. The numerical results show that our proposed control strategy is not only sample-efficient and robust but also effective in mitigating voltage fluctuations. |
|---|---|
| AbstractList | The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive power resources such as energy storage (ES) systems and electric vehicles (EVs) in active distribution networks play an important role in mitigating the voltage excursions. This paper proposes a two-timescale hybrid voltage control strategy based on a mixed-integer optimization method and multi-agent reinforcement learning (MARL) to reduce power loss and mitigate voltage violations. In the slow-timescale, the active and reactive power optimization problem involving capacitor banks (CBs), on-load tap changers (OLTC), and ES systems is formulated as a mixed-integer second-order cone programming problem. In the fast-timescale, the reactive power of smart inverters connected to solar photovoltaic systems and active power of EVs are adjusted to mitigate short-term voltage fluctuations with a MARL algorithm. Specifically, we propose an experience augmented multi-agent actor-critic (EA-MAAC) algorithm with an attention mechanism to learn high-quality control policies. The control policies are executed online in a decentralized manner. The proposed hybrid voltage control strategy is validated on an IEEE testing distribution feeder. The numerical results show that our proposed control strategy is not only sample-efficient and robust but also effective in mitigating voltage fluctuations. |
| Author | Yu, Nanpeng Hu, Daner Gao, Yuanqi Ye, Zhenhui Ye, Zuzhao Peng, Yonggang |
| Author_xml | – sequence: 1 givenname: Daner orcidid: 0000-0002-9400-2490 surname: Hu fullname: Hu, Daner organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Zhenhui orcidid: 0000-0002-7105-014X surname: Ye fullname: Ye, Zhenhui organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Yuanqi orcidid: 0000-0003-4078-6143 surname: Gao fullname: Gao, Yuanqi organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA – sequence: 4 givenname: Zuzhao orcidid: 0000-0002-0428-662X surname: Ye fullname: Ye, Zuzhao organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA – sequence: 5 givenname: Yonggang orcidid: 0000-0002-0960-3807 surname: Peng fullname: Peng, Yonggang email: pengyg@zju.edu.cn organization: Department of Electrical Engineering, Zhejiang University, Hangzhou, China – sequence: 6 givenname: Nanpeng orcidid: 0000-0001-5086-5465 surname: Yu fullname: Yu, Nanpeng email: nyu@ece.ucr.edu organization: Department of Electrical and Computer Engineering, University of California at Riverside, Riverside, CA, USA |
| BookMark | eNp9UE1LAzEQDVJBrd4FLwHPWyfJfuVYqlahUvHzuKS7k5qyTWo2VfTXm1rx4MG5zAfz3pt5B6RnnUVCjhkMGAN59nA_HnDgfCBYmcki2yH7TKYyEZCz3m-diT1y1HULiCGEyLncJ93Nug0mGc7RBnqOuKJ3aKx2vsblZjRB5a2xcxpH9Mm1Qc2RjpwN3rX02YSX2DjfGKsCNnRYB_OGVNkm0qhtc-ve0dPpKpil-VTBOHtIdrVqOzz6yX3yeHnxMLpKJtPx9Wg4SWouWUhKANXk8dJcI5YaWAFaNDkHrGtdzLJScKlSrjSroZSS5ZlSYiZSDSXCLEPRJ6db3pV3r2vsQrVwa2-jZMULXkCapiyNW7Ddqr3rOo-6WnmzVP6jYlBt3K2iu9XG3erH3QjJ_0BqE75fC16Z9j_gyRZoEPFXR5aQFbkQX8R0iZY |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1016_j_rser_2025_115977 crossref_primary_10_1016_j_swevo_2025_102132 crossref_primary_10_1109_ACCESS_2025_3566587 crossref_primary_10_1109_TSG_2024_3423700 crossref_primary_10_1016_j_epsr_2023_109738 crossref_primary_10_1016_j_rineng_2024_102741 crossref_primary_10_1109_TSTE_2024_3421929 crossref_primary_10_1016_j_apenergy_2024_123870 crossref_primary_10_1016_j_epsr_2025_111580 crossref_primary_10_1049_rpg2_13181 crossref_primary_10_3390_electronics12010214 crossref_primary_10_3390_en18082093 crossref_primary_10_1109_ACCESS_2024_3439015 crossref_primary_10_1186_s42162_024_00382_8 crossref_primary_10_1016_j_ijepes_2023_109761 crossref_primary_10_3390_en17246454 crossref_primary_10_3390_en18154083 crossref_primary_10_1109_TPWRS_2025_3531871 crossref_primary_10_3390_en18071809 crossref_primary_10_1109_TSG_2024_3417294 crossref_primary_10_1049_rpg2_12977 crossref_primary_10_1109_ACCESS_2025_3531492 crossref_primary_10_1109_TII_2023_3333845 crossref_primary_10_3390_ijgi14080300 crossref_primary_10_1016_j_energy_2023_127232 crossref_primary_10_1109_TIA_2025_3531321 crossref_primary_10_3390_s23031618 crossref_primary_10_2478_amns_2024_3041 crossref_primary_10_1016_j_ijhydene_2024_12_141 crossref_primary_10_3390_en18071837 crossref_primary_10_1016_j_apenergy_2023_121743 crossref_primary_10_3389_fenrg_2022_1108698 crossref_primary_10_1016_j_rser_2024_114282 crossref_primary_10_3390_en16207101 crossref_primary_10_1016_j_eswa_2023_121760 crossref_primary_10_1109_JIOT_2025_3569599 crossref_primary_10_1016_j_epsr_2023_109698 crossref_primary_10_1109_TSG_2025_3533958 crossref_primary_10_1049_rpg2_12868 crossref_primary_10_32604_cmc_2024_048771 crossref_primary_10_1016_j_ijepes_2024_109823 crossref_primary_10_1109_TII_2023_3342894 crossref_primary_10_1016_j_apenergy_2025_125993 crossref_primary_10_3390_app13052865 crossref_primary_10_1109_TSTE_2024_3485060 crossref_primary_10_1016_j_renene_2023_119514 crossref_primary_10_1109_TCSI_2023_3340691 crossref_primary_10_1109_TPWRS_2023_3242715 crossref_primary_10_1016_j_energy_2023_126965 crossref_primary_10_1109_TII_2024_3397390 crossref_primary_10_1016_j_ijepes_2024_110148 crossref_primary_10_1109_TPWRS_2023_3347389 crossref_primary_10_1109_TPWRS_2024_3510653 crossref_primary_10_1016_j_epsr_2025_111869 crossref_primary_10_3390_en16031330 crossref_primary_10_1038_s41598_025_08729_1 crossref_primary_10_1109_ACCESS_2025_3584129 crossref_primary_10_1109_TPWRS_2025_3528428 crossref_primary_10_1109_TSG_2025_3547830 crossref_primary_10_1109_TCDS_2023_3339131 crossref_primary_10_1109_ACCESS_2023_3296741 crossref_primary_10_1016_j_segan_2024_101529 crossref_primary_10_1016_j_egyr_2023_05_035 crossref_primary_10_1016_j_segan_2025_101821 crossref_primary_10_1016_j_neucom_2024_128015 crossref_primary_10_3390_app142311112 crossref_primary_10_1016_j_apenergy_2023_121648 crossref_primary_10_1109_OAJPE_2025_3573961 crossref_primary_10_1049_rpg2_13096 crossref_primary_10_1016_j_eswa_2025_129145 |
| Cites_doi | 10.1109/TSG.2017.2752234 10.1109/TSG.2020.3010130 10.1109/TPWRS.2020.2990179 10.1016/j.apenergy.2022.118762 10.1109/TSG.2017.2648509 10.1109/CCTA48906.2021.9659162 10.1109/SmartGridComm.2019.8909777 10.1109/TAC.2014.2332712 10.1109/59.119237 10.1109/tia.2017.2740850 10.1109/TSG.2016.2558585 10.1016/j.apenergy.2018.07.065 10.1109/TSG.2014.2329842 10.1109/CACSD.2004.1393890 10.1109/TSTE.2010.2098483 10.1109/tsg.2021.3060027 10.1109/TSG.2021.3058996 10.1109/TPWRS.2018.2813400 10.1109/5.726791 10.1109/61.19266 10.1109/tpwrs.2019.2948132 10.1007/978-3-319-71682-4_5 10.1109/TRA.2002.804040 10.1109/TPWRS.2016.2585202 10.1109/TSG.2019.2962625 10.1609/aaai.v32i1.11492 10.1109/MPER.1989.4310642 10.1109/TSG.2015.2419134 10.1109/TPWRS.2006.879234 10.1109/TPWRS.2013.2256375 10.1109/TII.2021.3050039 10.1109/TNN.1998.712192 10.1109/tsg.2018.2879572 10.1109/ISGT49243.2021.9372283 10.1109/SmartGridComm.2019.8909741 10.1109/TSG.2014.2374613 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2022.3185975 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 4886 |
| ExternalDocumentID | 10_1109_TSG_2022_3185975 9805763 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFB0906000; 2020YFB0906002 funderid: 10.13039/501100012166 – fundername: University of California grantid: L22CR4556 funderid: 10.13039/100005595 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c291t-800ad60336fee8f0170f3d620eccf7b58329a42af1c0899165aa3b34f08e0b5e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000871062300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Mon Jun 30 09:43:01 EDT 2025 Sat Nov 29 03:46:00 EST 2025 Tue Nov 18 20:53:11 EST 2025 Wed Aug 27 02:18:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-800ad60336fee8f0170f3d620eccf7b58329a42af1c0899165aa3b34f08e0b5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0428-662X 0000-0002-0960-3807 0000-0001-5086-5465 0000-0002-9400-2490 0000-0003-4078-6143 0000-0002-7105-014X |
| PQID | 2727044414 |
| PQPubID | 2040408 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_9805763 crossref_primary_10_1109_TSG_2022_3185975 proquest_journals_2727044414 crossref_citationtrail_10_1109_TSG_2022_3185975 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref37 ref14 ref31 Fujimoto (ref35) ref30 ref11 Wang (ref36) 2020 ref10 ref2 ref1 ref17 ref39 ref16 Cao (ref24) 2020 ref38 ref19 ref18 Lowe (ref27) 2017 ref23 ref45 ref26 ref25 ref20 Laskin (ref22) 2020 ref41 ref44 ref21 ref43 ref28 Iqbal (ref32); 97 ref29 ref8 ref7 ref9 ref4 ref3 Haarnoja (ref33); 80 ref6 ref5 ref40 (ref42) 2019 Lillicrap (ref34) 2015 |
| References_xml | – year: 2020 ident: ref22 article-title: Reinforcement learning with augmented data publication-title: arXiv:2004.14990 – year: 2020 ident: ref24 article-title: Model-free voltage regulation of unbalanced distribution network based on surrogate model and deep reinforcement learning publication-title: arXiv:2006.13992 – ident: ref11 doi: 10.1109/TSG.2017.2752234 – ident: ref15 doi: 10.1109/TSG.2020.3010130 – ident: ref18 doi: 10.1109/TPWRS.2020.2990179 – ident: ref26 doi: 10.1016/j.apenergy.2022.118762 – ident: ref4 doi: 10.1109/TSG.2017.2648509 – ident: ref5 doi: 10.1109/CCTA48906.2021.9659162 – ident: ref23 doi: 10.1109/SmartGridComm.2019.8909777 – volume: 80 start-page: 1861 volume-title: Proc. ICML ident: ref33 article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor – ident: ref30 doi: 10.1109/TAC.2014.2332712 – ident: ref41 doi: 10.1109/59.119237 – ident: ref2 doi: 10.1109/tia.2017.2740850 – ident: ref8 doi: 10.1109/TSG.2016.2558585 – ident: ref43 doi: 10.1016/j.apenergy.2018.07.065 – ident: ref10 doi: 10.1109/TSG.2014.2329842 – volume: 97 start-page: 2961 volume-title: Proc. 36th Int. Conf. Mach. Learn. ident: ref32 article-title: Actor-attention-critic for multi-agent reinforcement learning – ident: ref44 doi: 10.1109/CACSD.2004.1393890 – year: 2017 ident: ref27 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: arXiv:1706.02275 – ident: ref6 doi: 10.1109/TSTE.2010.2098483 – ident: ref19 doi: 10.1109/tsg.2021.3060027 – ident: ref20 doi: 10.1109/TSG.2021.3058996 – start-page: 1587 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref35 article-title: Addressing function approximation error in actor-critic methods – ident: ref12 doi: 10.1109/TPWRS.2018.2813400 – ident: ref21 doi: 10.1109/5.726791 – year: 2020 ident: ref36 article-title: Meta-SAC: Auto-tune the entropy temperature of soft actor-critic via metagradient publication-title: arXiv:2007.01932 – ident: ref29 doi: 10.1109/61.19266 – ident: ref25 doi: 10.1109/tpwrs.2019.2948132 – ident: ref39 doi: 10.1007/978-3-319-71682-4_5 – ident: ref38 doi: 10.1109/TRA.2002.804040 – ident: ref7 doi: 10.1109/TPWRS.2016.2585202 – ident: ref17 doi: 10.1109/TSG.2019.2962625 – ident: ref37 doi: 10.1609/aaai.v32i1.11492 – ident: ref40 doi: 10.1109/MPER.1989.4310642 – ident: ref13 doi: 10.1109/TSG.2015.2419134 – ident: ref31 doi: 10.1109/TPWRS.2006.879234 – ident: ref1 doi: 10.1109/TPWRS.2013.2256375 – ident: ref28 doi: 10.1109/TII.2021.3050039 – year: 2015 ident: ref34 article-title: Continuous control with deep reinforcement learning publication-title: arXiv:1509.02971 – ident: ref45 doi: 10.1109/TNN.1998.712192 – ident: ref9 doi: 10.1109/tsg.2018.2879572 – ident: ref14 doi: 10.1109/ISGT49243.2021.9372283 – ident: ref16 doi: 10.1109/SmartGridComm.2019.8909741 – volume-title: Web Application-Renewable Ninja year: 2019 ident: ref42 – ident: ref3 doi: 10.1109/TSG.2014.2374613 |
| SSID | ssj0000333629 |
| Score | 2.6609156 |
| Snippet | The increasing penetration of distributed renewable energy resources causes voltage fluctuations in distribution networks. The controllable active and reactive... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4873 |
| SubjectTerms | Active control Algorithms Capacitor banks Controllability Costs Deep learning Deep reinforcement learning Electric potential Electric vehicles Energy policy Energy sources Energy storage experience augmentation Inverters Machine learning Mixed integer multi-agent Multiagent systems Optimization Quality control Reactive power Reinforcement learning Robustness (mathematics) soft actor-critic Tap changers Time Voltage Voltage control Voltage fluctuations |
| Title | Multi-Agent Deep Reinforcement Learning for Voltage Control With Coordinated Active and Reactive Power Optimization |
| URI | https://ieeexplore.ieee.org/document/9805763 https://www.proquest.com/docview/2727044414 |
| Volume | 13 |
| WOSCitedRecordID | wos000871062300058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYxAEOvAZivJQDFyS6pUkfy3HieUAw8dytSpsEJo0OsY7fj5N21SQQEremSqIqX-04dj4b4DhVAVOR9D2GwuMFJtWepEyiMgyFyjiXoePCPN_Et7e94VAMluC05sJord3lM92xjy6WrybZzLrKugJnQHloQCOOo5KrVftTKOeoi4ULIgc2nB_yeVSSiu7jwxWeBRnrWLKwsJcKF3YhV1blhy52G8zl-v8-bQPWKkOS9EvkN2FJ51uwupBesAVTx671-pY9Rc61_iD32iVKzZxPkFS5VV8JviLPk3GBuoWclXfXycuoeMMGnk1HOdqjivSdZiQyVziNLBsDW2ON3KHaea_4nNvwdHnxeHbtVUUWvIwJv0BQqFQRrl5ktO4Zm07HcBUxitiaOA1R4oUMmDR-ZiOEfhRKyVMeGNrTNA0134FmPsn1LhA0LYwxKjNG6iBNpZRpLNz4mFLDojZ054ueZFUGclsIY5y4kwgVCcKUWJiSCqY2nNQjPsrsG3_0bVlY6n4VIm04mOOaVOI5TRhabTZRnh_s_T5qH1bs3CXp8ACaxedMH8Jy9lWMpp9H7s_7BpDb19s |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgEJ74StSDb-P65ODFxLoUaHc5bnzHdTW6Pm4NLaCbaNe41d_vQLsbE42Jt9IAJXydYWD4ZgB2Uy2YjlUYMBSeQNjUBIoyhcowkjrjXEWeC3PfbnQ6zcdHeT0G-yMujDHGXz4zB-7R-_J1P_twR2V1iT2gPIzDZCQEoyVba3SiQjlHbSy9G1k4h37Eh35JKuvd21PcDTJ24OjC0l0r_LYO-cQqP7SxX2JO5v83uAWYq0xJ0iqxX4Qxky_B7LcAg8sw8PzaoOX4U-TImDdyY3yo1MyfCpIquuoTwVfkvv9SoHYhh-XtdfLQK56xgLvTXo4WqSYtrxuJyjV2o8rCtcuyRq5Q8bxWjM4VuDs57h6eBVWahSBjMiwQFqp0jLMXW2Oa1gXUsVzHjCK6tpFGKPNSCaZsmDkfYRhHSvGUC0ubhqaR4aswkfdzswYEjQtrrc6sVUakqVIqbUjfvkGpZXEN6sNJT7IqBrlLhfGS-L0IlQnClDiYkgqmGuyNWryV8Tf-qLvsYBnVqxCpweYQ16QS0EHC0G5zofJCsf57qx2YPutetpP2eediA2bcd0oK4iZMFO8fZgumss-iN3jf9n_hF_GG2yI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Deep+Reinforcement+Learning+for+Voltage+Control+With+Coordinated+Active+and+Reactive+Power+Optimization&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Hu%2C+Daner&rft.au=Ye%2C+Zhenhui&rft.au=Gao%2C+Yuanqi&rft.au=Ye%2C+Zuzhao&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=13&rft.issue=6&rft.spage=4873&rft_id=info:doi/10.1109%2FTSG.2022.3185975&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |