Control Barriers in Bayesian Learning of System Dynamics

This article focuses on learning a model of system dynamics online, while satisfying safety constraints. Our objective is to avoid offline system identification or hand-specified models and allow a system to safely and autonomously estimate and adapt its own model during operation. Given streaming o...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control Vol. 68; no. 1; pp. 214 - 229
Main Authors: Dhiman, Vikas, Khojasteh, Mohammad Javad, Franceschetti, Massimo, Atanasov, Nikolay
Format: Journal Article
Language:English
Published: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9286, 1558-2523
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This article focuses on learning a model of system dynamics online, while satisfying safety constraints. Our objective is to avoid offline system identification or hand-specified models and allow a system to safely and autonomously estimate and adapt its own model during operation. Given streaming observations of the system state, we use Bayesian learning to obtain a distribution over the system dynamics. Specifically, we propose a new matrix variate Gaussian process (MVGP) regression approach with an efficient covariance factorization to learn the drift and input gain terms of a nonlinear control-affine system. The MVGP distribution is then used to optimize the system behavior and ensure safety with high probability, by specifying control Lyapunov function (CLF) and control barrier function (CBF) chance constraints. We show that a safe control policy can be synthesized for systems with arbitrary relative degree and probabilistic CLF-CBF constraints by solving a second-order cone program. Finally, we extend our design to a self-triggering formulation, adaptively determining the time at which a new control input needs to be applied in order to guarantee safety.
AbstractList This article focuses on learning a model of system dynamics online, while satisfying safety constraints. Our objective is to avoid offline system identification or hand-specified models and allow a system to safely and autonomously estimate and adapt its own model during operation. Given streaming observations of the system state, we use Bayesian learning to obtain a distribution over the system dynamics. Specifically, we propose a new matrix variate Gaussian process (MVGP) regression approach with an efficient covariance factorization to learn the drift and input gain terms of a nonlinear control-affine system. The MVGP distribution is then used to optimize the system behavior and ensure safety with high probability, by specifying control Lyapunov function (CLF) and control barrier function (CBF) chance constraints. We show that a safe control policy can be synthesized for systems with arbitrary relative degree and probabilistic CLF-CBF constraints by solving a second-order cone program. Finally, we extend our design to a self-triggering formulation, adaptively determining the time at which a new control input needs to be applied in order to guarantee safety.
Author Franceschetti, Massimo
Khojasteh, Mohammad Javad
Atanasov, Nikolay
Dhiman, Vikas
Author_xml – sequence: 1
  givenname: Vikas
  orcidid: 0000-0003-0078-3677
  surname: Dhiman
  fullname: Dhiman, Vikas
  email: vikas.dhiman@maine.edu
  organization: Department of Electrical and Computer Engineering, University of Maine, Bangor, ME, USA
– sequence: 2
  givenname: Mohammad Javad
  orcidid: 0000-0002-8459-6483
  surname: Khojasteh
  fullname: Khojasteh, Mohammad Javad
  email: mkhojast@mit.edu
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 3
  givenname: Massimo
  orcidid: 0000-0002-4057-8152
  surname: Franceschetti
  fullname: Franceschetti, Massimo
  email: massimo@ece.ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
– sequence: 4
  givenname: Nikolay
  orcidid: 0000-0003-0272-7580
  surname: Atanasov
  fullname: Atanasov, Nikolay
  email: natanasov@eng.ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
BookMark eNp9kEtLAzEURoNUsK3uBTcDrqfmMXkt61gfUHBhXYdMuJGUNlOT6WL-vTO0uHDh6t4L37kfnBmaxDYCQrcELwjB-mGzrBcUU7JghEnM9QWaEs5VSTllEzTFmKhSUyWu0Czn7XCKqiJTpOo2dqndFY82pQApFyEOew852FiswaYY4lfR-uKjzx3si6c-2n1w-RpdervLcHOec_T5vNrUr-X6_eWtXq5LRzXpSuk98dxa7IVk3DJqnfNM60YIBaxhrHGV9NBgEJXWpKKVk1SClw477rhkc3R_-ntI7fcRcme27THFodJQyZWkVLExhU8pl9qcE3hzSGFvU28INqMfM_gxox9z9jMg4g_iQme7MPqwYfcfeHcCAwD89mjBFaGM_QAy8HMF
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TRO_2025_3577022
crossref_primary_10_1109_TASE_2023_3305485
crossref_primary_10_1016_j_automatica_2024_111800
crossref_primary_10_1109_LRA_2022_3182544
crossref_primary_10_1109_JAS_2023_123075
crossref_primary_10_1109_TAC_2025_3550850
crossref_primary_10_1016_j_arcontrol_2024_100947
crossref_primary_10_1109_TASE_2023_3339501
crossref_primary_10_1016_j_arcontrol_2024_100945
crossref_primary_10_1109_LCSYS_2023_3235958
crossref_primary_10_1109_TCYB_2025_3539464
crossref_primary_10_1080_01691864_2024_2401897
crossref_primary_10_1109_TASE_2023_3341470
crossref_primary_10_1109_TCYB_2024_3390947
crossref_primary_10_1109_LCSYS_2025_3581519
crossref_primary_10_1109_TSMC_2023_3240290
crossref_primary_10_1177_02783649251352000
crossref_primary_10_1080_10095020_2025_2519374
crossref_primary_10_1109_LRA_2022_3216996
crossref_primary_10_1109_TAC_2023_3250514
crossref_primary_10_1016_j_ins_2023_119684
crossref_primary_10_1016_j_automatica_2025_112263
crossref_primary_10_1002_rnc_6585
crossref_primary_10_1109_TSMC_2023_3292810
Cites_doi 10.1016/j.automatica.2021.109597
10.3182/20070822-3-za-2920.00076
10.1109/LCSYS.2020.3043287
10.5555/3045390.3045502
10.23919/ECC.2019.8795639
10.1109/TAC.2007.902736
10.1609/aaai.v33i01.33013387
10.23919/ACC.2019.8814901
10.23919/ACC45564.2020.9147463
10.1109/IROS45743.2020.9341190
10.1109/TAC.2016.2638961
10.23919/ACC.2019.8814657
10.1109/LRA.2021.3057023
10.1109/ICRA.2019.8793891
10.15607/rss.2018.xiv.056
10.1109/JPROC.2012.2189792
10.23919/ECC51009.2020.9143595
10.1109/CCTA.2017.8062713
10.1109/CDC42340.2020.9304160
10.1109/CDC.2018.8619572
10.15607/rss.2020.xvi.087
10.23919/ECC.2019.8796030
10.1109/CDC42340.2020.9303847
10.1109/ITSC45102.2020.9294485
10.1109/LCSYS.2019.2917975
10.1109/TCYB.2020.2980048
10.1016/S0024-3795(98)10032-0
10.1007/978-3-030-44051-0_19
10.1109/LRA.2020.2976272
10.1109/ICRA40945.2020.9196709
10.1109/ICRA.2018.8460471
10.1016/j.automatica.2018.07.004
10.1109/MCS.2003.1188769
10.1016/j.automatica.2020.109439
10.1007/978-1-4613-1193-5
10.1109/AERO47225.2020.9172271
10.1016/j.ifacol.2015.11.152
10.1609/aaai.v32i1.11797
10.1109/CDC42340.2020.9303776
10.1109/TCNS.2020.3028035
10.1109/ACC.2015.7172044
10.23919/ACC50511.2021.9483182
10.23919/ACC45564.2020.9147584
10.1109/CDC40024.2019.9029455
10.1109/TAC.2018.2876389
10.1561/2200000036
10.1007/s10208-019-09426-y
10.1109/CDC45484.2021.9683743
10.1017/CBO9781316576533
10.1109/CDC42340.2020.9303785
10.1109/ACC.2016.7524935
10.23919/ACC.2019.8815276
10.1109/CDC.2012.6425820
10.1109/ACC.2016.7526114
10.1109/TAC.2019.2958840
10.1109/TNNLS.2014.2319052
10.1109/CDC42340.2020.9303957
10.1016/j.automatica.2020.109009
10.1109/MRA.2010.936946
10.1109/CDC40024.2019.9029666
10.1109/ICRA.2016.7487170
10.1109/LCSYS.2020.3005923
10.23919/ACC.2018.8431275
10.1137/1.9780898718980
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2021.3137059
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 229
ExternalDocumentID 10_1109_TAC_2021_3137059
9658123
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CNS-1446891; ECCS-1917177; IIS-2007141
  funderid: 10.13039/501100008982
– fundername: ARL DCIST CRA
  grantid: W911NF-17-2-0181
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-7ff1f5aa0f6735a32accf399b668e3b33bc47feb0e64991424c727ef7c0c5c573
IEDL.DBID RIE
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921346300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:13:42 EDT 2025
Tue Nov 18 22:24:33 EST 2025
Sat Nov 29 05:41:04 EST 2025
Wed Aug 27 02:11:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7ff1f5aa0f6735a32accf399b668e3b33bc47feb0e64991424c727ef7c0c5c573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4057-8152
0000-0002-8459-6483
0000-0003-0078-3677
0000-0003-0272-7580
PQID 2758722837
PQPubID 85475
PageCount 16
ParticipantIDs crossref_primary_10_1109_TAC_2021_3137059
ieee_primary_9658123
proquest_journals_2758722837
crossref_citationtrail_10_1109_TAC_2021_3137059
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref14
ref53
ref52
ref11
ref55
Khojasteh (ref1) 2020
ref10
ref54
ref17
ref19
Sarkar (ref77) 2020
ref18
Berkenkamp (ref63) 2017
Gardner (ref81) 2018
ref51
ref50
ref46
ref45
Taylor (ref80) 2009
Sarkar (ref8) 2019
ref48
ref47
ref42
ref41
ref44
ref43
Williams (ref59) 2006; 2
ref7
ref9
ref4
ref3
ref5
ref40
ref35
ref79
Deisenroth (ref6) 2011
ref34
ref78
ref37
(ref71) 2020
ref36
Liu (ref12) 2020
ref31
ref75
ref30
ref74
ref33
ref32
ref76
Levine (ref16) 2016; 17
ref2
ref39
ref38
Louizos (ref67) 2016
Searle (ref83) 1971
ref70
ref73
ref24
ref68
ref23
ref26
Sun (ref66) 2017
ref25
ref20
ref64
ref22
ref21
ref65
ref28
ref27
Sutton (ref82) 2018
ref29
Pereira (ref49) 2020
Taylor (ref58) 2020
ref60
Vandenberghe (ref72) 2010
ref62
ref61
Lederer (ref69) 2019
References_xml – ident: ref43
  doi: 10.1016/j.automatica.2021.109597
– ident: ref20
  doi: 10.3182/20070822-3-za-2920.00076
– ident: ref50
  doi: 10.1109/LCSYS.2020.3043287
– ident: ref60
  doi: 10.5555/3045390.3045502
– ident: ref9
  doi: 10.23919/ECC.2019.8795639
– start-page: 5610
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  year: 2019
  ident: ref8
  article-title: Near optimal finite time identification of arbitrary linear dynamical systems
– ident: ref24
  doi: 10.1109/TAC.2007.902736
– ident: ref53
  doi: 10.1609/aaai.v33i01.33013387
– ident: ref47
  doi: 10.23919/ACC.2019.8814901
– ident: ref55
  doi: 10.23919/ACC45564.2020.9147463
– ident: ref76
  doi: 10.1109/IROS45743.2020.9341190
– ident: ref21
  doi: 10.1109/TAC.2016.2638961
– ident: ref30
  doi: 10.23919/ACC.2019.8814657
– volume: 17
  start-page: 1334
  issue: 1
  year: 2016
  ident: ref16
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J. Mach. Learn. Res.
– ident: ref18
  doi: 10.1109/LRA.2021.3057023
– ident: ref57
  doi: 10.1109/ICRA.2019.8793891
– start-page: 1283
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  year: 2017
  ident: ref66
  article-title: Learning structured weight uncertainty in Bayesian neural networks
– ident: ref17
  doi: 10.15607/rss.2018.xiv.056
– ident: ref2
  doi: 10.1109/JPROC.2012.2189792
– ident: ref46
  doi: 10.23919/ECC51009.2020.9143595
– ident: ref22
  doi: 10.1109/CCTA.2017.8062713
– ident: ref26
  doi: 10.1109/CDC42340.2020.9304160
– ident: ref39
  doi: 10.1109/CDC.2018.8619572
– ident: ref13
  doi: 10.15607/rss.2020.xvi.087
– ident: ref25
  doi: 10.23919/ECC.2019.8796030
– ident: ref64
  doi: 10.1109/CDC42340.2020.9303847
– ident: ref78
  doi: 10.1109/ITSC45102.2020.9294485
– start-page: 7587
  volume-title: Proc. 32nd Int. Conf. Neural Inf. Process. Syst.
  year: 2018
  ident: ref81
  article-title: GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration
– ident: ref28
  doi: 10.1109/LCSYS.2019.2917975
– ident: ref34
  doi: 10.1109/TCYB.2020.2980048
– ident: ref70
  doi: 10.1016/S0024-3795(98)10032-0
– start-page: 1708
  volume-title: Proc. 33rd Int. Conf. Mach. Learn.
  year: 2016
  ident: ref67
  article-title: Structured and efficient variational deep learning with matrix Gaussian posteriors
– start-page: 908
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  year: 2017
  ident: ref63
  article-title: Safe model-based reinforcement learning with stability guarantees
– volume-title: Linear Models
  year: 1971
  ident: ref83
– ident: ref61
  doi: 10.1007/978-3-030-44051-0_19
– start-page: 1783
  volume-title: Proc. Conf. Robot Learn.
  year: 2020
  ident: ref49
  article-title: Safe optimal control using stochastic barrier functions and deep forward-backward SDEs
– ident: ref5
  doi: 10.1109/LRA.2020.2976272
– ident: ref51
  doi: 10.1109/ICRA40945.2020.9196709
– ident: ref52
  doi: 10.1109/ICRA.2018.8460471
– ident: ref27
  doi: 10.1016/j.automatica.2018.07.004
– volume: 2
  volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: ref59
– ident: ref3
  doi: 10.1109/MCS.2003.1188769
– ident: ref48
  doi: 10.1016/j.automatica.2020.109439
– ident: ref68
  doi: 10.1007/978-1-4613-1193-5
– ident: ref19
  doi: 10.1109/AERO47225.2020.9172271
– start-page: 465
  volume-title: Proc. 28th Int. Conf. Mach. Learn.
  year: 2011
  ident: ref6
  article-title: PILCO: A model-based and data-efficient approach to policy search
– ident: ref23
  doi: 10.1016/j.ifacol.2015.11.152
– year: 2009
  ident: ref80
  article-title: Spatial statistics: notes on random fields
– ident: ref45
  doi: 10.1609/aaai.v32i1.11797
– ident: ref74
  doi: 10.1109/CDC42340.2020.9303776
– start-page: 781
  volume-title: Proc. 2nd Conf. Learn. Dyn. Control
  year: 2020
  ident: ref1
  article-title: Probabilistic safety constraints for learned high relative degree system dynamics
– ident: ref11
  doi: 10.1109/TCNS.2020.3028035
– ident: ref35
  doi: 10.1109/ACC.2015.7172044
– year: 2010
  ident: ref72
  article-title: The CVXOPT linear and quadratic cone program solvers
– start-page: 708
  volume-title: Proc. 2nd Conf. Learn. Dyn. Control
  year: 2020
  ident: ref58
  article-title: Learning for safety-critical control with control barrier functions
– start-page: 608
  volume-title: Proc. 2nd Conf. Learn. Dyn. Control
  year: 2020
  ident: ref12
  article-title: Robust regression for safe exploration in control
– ident: ref42
  doi: 10.23919/ACC50511.2021.9483182
– ident: ref54
  doi: 10.23919/ACC45564.2020.9147584
– ident: ref38
  doi: 10.1109/CDC40024.2019.9029455
– year: 2020
  ident: ref77
  article-title: High-relative degree stochastic control Lyapunov and barrier functions
– ident: ref41
  doi: 10.1109/TAC.2018.2876389
– ident: ref65
  doi: 10.1561/2200000036
– ident: ref7
  doi: 10.1007/s10208-019-09426-y
– ident: ref73
  doi: 10.1109/CDC45484.2021.9683743
– ident: ref62
  doi: 10.1017/CBO9781316576533
– ident: ref75
  doi: 10.1109/CDC42340.2020.9303785
– ident: ref37
  doi: 10.1109/ACC.2016.7524935
– volume-title: Gurobi Optimizer Reference Manual
  year: 2020
  ident: ref71
– ident: ref44
  doi: 10.23919/ACC.2019.8815276
– ident: ref33
  doi: 10.1109/CDC.2012.6425820
– ident: ref36
  doi: 10.1109/ACC.2016.7526114
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref82
– ident: ref31
  doi: 10.1109/TAC.2019.2958840
– ident: ref14
  doi: 10.1109/TNNLS.2014.2319052
– ident: ref15
  doi: 10.1109/CDC42340.2020.9303957
– ident: ref32
  doi: 10.1016/j.automatica.2020.109009
– ident: ref4
  doi: 10.1109/MRA.2010.936946
– ident: ref29
  doi: 10.1109/CDC40024.2019.9029666
– ident: ref40
  doi: 10.1109/ICRA.2016.7487170
– start-page: 659
  volume-title: Proc. 33rd Int. Conf. Neural Inf. Process. Syst.
  year: 2019
  ident: ref69
  article-title: Uniform error bounds for Gaussian process regression with application to safe control
– ident: ref56
  doi: 10.1109/LCSYS.2020.3005923
– ident: ref10
  doi: 10.23919/ACC.2018.8431275
– ident: ref79
  doi: 10.1137/1.9780898718980
SSID ssj0016441
Score 2.587213
Snippet This article focuses on learning a model of system dynamics online, while satisfying safety constraints. Our objective is to avoid offline system...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 214
SubjectTerms Bayes methods
Bayesian analysis
Control barrier function (CBF)
Control systems
Gaussian process
Gaussian processes
high relative-degree system safety
learning for dynamics and control
Liapunov functions
Machine learning
Nonlinear control
Nonlinear dynamical systems
Probabilistic logic
Safety
self-triggered safe control
Stability analysis
Statistical analysis
System dynamics
System identification
Title Control Barriers in Bayesian Learning of System Dynamics
URI https://ieeexplore.ieee.org/document/9658123
https://www.proquest.com/docview/2758722837
Volume 68
WOSCitedRecordID wos000921346300016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDF8G12013kz1qtXgqHir0tmSnEynIVrqt4L83j-1SUARvOSQQJsk8M98HcB1ZkLtEKnN5beomjONAociDGBNKIjWTgjzZhBiP5XSavjTgtu6FISL3-Yzu7NDV8mcLXNtUWc8ClRhN24SmEML3atUVA2vXvdY1DziSdUkyTHuT-6EJBKO-iU-5cKikWybIcar8UMTOuowO_revQ9ivvEh274_9CBpUHMPeFrZgG-TQf0JnD2ppWelKNi_M-Its1ySrYFXf2EIzD1rOHj03fXkCr6OnyfA5qGgSAozS_ioQWvd1rFSoE8FjxSOFqI3fkSeJJJ5znuNAaMpDSkx4Yzvb0DgtpAWGGGMs-Cm0ikVBZ8CQxxxTiflgYEFvSCqyePcmiFWpMXVhB3obyWVYYYhbKov3zMUSYZoZWWdW1lkl6w7c1Cs-PH7GH3PbVrb1vEqsHehuDierHliZRSbOEQ665_z3VRewa5nhfbakC63Vck2XsIOfq3m5vHJ35xuhzr6g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MKagHv6Y4ndqDF8G6Nmma9qjTMXEODxN2K2n2KgPpZN0E_3vz0ZWBInjLIYHwkrzPvN8P4JJokLswEury6tSNx5grJE9dJkMMiRhHHC3ZBB8MotEofqnBddULg4jm8xne6KGp5Y-ncqFTZW0NVKI07RqssyAgvu3WqmoG2rJbvaueMImqoqQXt4e3HRUKEl9FqJQbXNIVI2RYVX6oYmNfurv_29ke7JR-pHNrD34fapgfwPYKumADoo79hu7ciZnmpSucSa7GX6j7Jp0SWPXNmWaOhS137i07fXEIr92HYafnlkQJriSxP3d5lvkZE8LLQk6ZoERImSnPIw3DCGlKaSoDnmHqYagCHN3bJpXbghmXnmSScXoE9Xya4zE4kjIq40imQaBhbzASqBHvVRgrYmXsvCa0l5JLZIkirsks3hMTTXhxomSdaFknpaybcFWt-LAIGn_MbWjZVvNKsTahtTycpHxiRUJUpMMNeM_J76suYLM3fO4n_cfB0ylsaZ54mztpQX0-W-AZbMjP-aSYnZt79A27DMHn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+Barriers+in+Bayesian+Learning+of+System+Dynamics&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Dhiman%2C+Vikas&rft.au=Khojasteh%2C+Mohammad+Javad&rft.au=Franceschetti%2C+Massimo&rft.au=Atanasov%2C+Nikolay&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=68&rft.issue=1&rft.spage=214&rft.epage=229&rft_id=info:doi/10.1109%2FTAC.2021.3137059&rft.externalDocID=9658123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon