Block-row and block-column iterative algorithms for solving linear matrix equation

Using tools like the Kronecker product and the vector operator, various Sylvester matrix equations can always be converted into the form A x = f , motivating us to investigate the algorithm for solving the linear matrix equation A x = f . By dividing the coefficient matrix A into row blocks or colum...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational & applied mathematics Ročník 42; číslo 4
Hlavní autori: Wang, Wenli, Qu, Gangrong, Song, Caiqin, Liu, Duo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.06.2023
Predmet:
ISSN:2238-3603, 1807-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Using tools like the Kronecker product and the vector operator, various Sylvester matrix equations can always be converted into the form A x = f , motivating us to investigate the algorithm for solving the linear matrix equation A x = f . By dividing the coefficient matrix A into row blocks or column blocks, a block-row iterative (BRI) algorithm, a block-column iterative (BCI) algorithm and an accelerated block-column iterative (ABCI) algorithm are developed to solve A x = f . It is successfully proved that the numerical solution produced by the proposed algorithms can converge to the exact solution for any given initial vector under appropriate conditions. Numerical examples are provided to demonstrate the effectiveness and superiority of the proposed algorithms.
AbstractList Using tools like the Kronecker product and the vector operator, various Sylvester matrix equations can always be converted into the form A x = f , motivating us to investigate the algorithm for solving the linear matrix equation A x = f . By dividing the coefficient matrix A into row blocks or column blocks, a block-row iterative (BRI) algorithm, a block-column iterative (BCI) algorithm and an accelerated block-column iterative (ABCI) algorithm are developed to solve A x = f . It is successfully proved that the numerical solution produced by the proposed algorithms can converge to the exact solution for any given initial vector under appropriate conditions. Numerical examples are provided to demonstrate the effectiveness and superiority of the proposed algorithms.
ArticleNumber 174
Author Liu, Duo
Wang, Wenli
Song, Caiqin
Qu, Gangrong
Author_xml – sequence: 1
  givenname: Wenli
  surname: Wang
  fullname: Wang, Wenli
  organization: School of Mathematics and Statistics, Beijing Jiaotong University
– sequence: 2
  givenname: Gangrong
  surname: Qu
  fullname: Qu, Gangrong
  email: grqu@bjtu.edu.cn
  organization: School of Mathematics and Statistics, Beijing Jiaotong University
– sequence: 3
  givenname: Caiqin
  surname: Song
  fullname: Song, Caiqin
  email: songcaiqin1983@163.com
  organization: School of Mathematical Sciences, University of Jinan
– sequence: 4
  givenname: Duo
  surname: Liu
  fullname: Liu, Duo
  organization: School of Mathematics and Statistics, Beijing Jiaotong University
BookMark eNp9kMtKAzEUQINUsK3-gKv8QDQvJzNLLWqFgiC6Dpk8amom0WRa7d87bV256OJyuXDPfZwJGMUULQCXBF8RjMV14ZgRjjBluyAUbU_AmNRYIMwwHYExpaxGrMLsDExKWWHMBOF8DF7uQtIfKKdvqKKB7b7SKay7CH1vs-r9xkIVlin7_r0r0KUMSwobH5cw-GhVhp3qs_-B9ms9dKd4Dk6dCsVe_OUpeHu4f53N0eL58Wl2u0CaNqRHwlamMdY5bYhx1CnDm5rVhgrHKbeaK1E7Zhp-IypdMYFbXTms2qZlilBL2RTQw1ydUynZOvmZfafyVhIsd1bkwYocjMi9FbkdoPofpH2_P7vPyofjKDugZdgTlzbLVVrnOLx4jPoFcOh8AQ
CitedBy_id crossref_primary_10_1016_j_jfranklin_2024_107021
crossref_primary_10_1186_s13662_024_03849_w
crossref_primary_10_2298_FIL2511789W
crossref_primary_10_1002_oca_3134
crossref_primary_10_1016_j_jfranklin_2024_107268
Cites_doi 10.1109/TAC.2005.852558
10.1016/j.jfranklin.2016.11.030
10.1080/00207160802123458
10.1007/s40314-021-01579-3
10.1016/j.apnum.2021.06.006
10.1186/s13662-019-2036-1
10.1016/j.jfranklin.2021.01.040
10.3182/20070829-3-RU-4912.00030
10.1007/s10915-022-02058-5
10.1016/j.jfranklin.2022.09.049
10.1016/j.sysconle.2004.06.008
10.1016/j.automatica.2004.10.010
10.1016/j.ejcon.2020.07.008
10.1016/j.cam.2021.113494
10.1007/s41980-019-00205-7
10.1007/s40314-020-01335-z
10.1016/j.jfranklin.2020.02.026
10.1007/s12190-020-01486-6
10.1016/j.jfranklin.2017.09.005
10.1137/20M133751X
10.1016/j.jfranklin.2021.05.012
10.1007/s40314-021-01523-5
10.1080/03081087.2019.1704213
10.1007/s40314-021-01628-x
10.1016/j.jfranklin.2022.05.023
10.1016/j.apm.2011.03.038
10.1109/9.489286
10.1109/9.250470
10.1007/s40314-019-0921-6
10.1016/j.jfranklin.2015.03.011
10.1016/j.camwa.2021.04.026
10.1016/j.jfranklin.2018.04.008
10.1007/s13398-020-00826-2
10.1016/j.amc.2010.05.029
10.1016/j.amc.2011.11.055
10.1016/j.amc.2015.07.022
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40314-023-02312-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
ExternalDocumentID 10_1007_s40314_023_02312_y
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
ID FETCH-LOGICAL-c291t-7e6d9deffcd1df2fad49838d27f424ec4a78f3d94576c6370bc6f0ab9b3a12e23
IEDL.DBID RSV
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000983309900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2238-3603
IngestDate Tue Nov 18 21:28:18 EST 2025
Sat Nov 29 01:53:14 EST 2025
Fri Feb 21 02:43:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Accelerated block-column iterative algorithm
15A24
65F10
15A21
Gradient-based iterative algorithm
Linear matrix equation
Block-row iterative algorithm
Block-column iterative algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7e6d9deffcd1df2fad49838d27f424ec4a78f3d94576c6370bc6f0ab9b3a12e23
ParticipantIDs crossref_primary_10_1007_s40314_023_02312_y
crossref_citationtrail_10_1007_s40314_023_02312_y
springer_journals_10_1007_s40314_023_02312_y
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Zhang, Yin (CR38) 2017; 354
Ramadan, El-shazly, Selim (CR24) 2019; 27
Wang, Dai, Liao (CR33) 2012; 218
Tian, Wang, Dong, Liu (CR29) 2020; 357
CR19
Chen, Chen (CR3) 2021; 358
Feng, Wu, Xie (CR13) 2021; 40
Zhou (CR39) 2015; 352
Duan (CR12) 1996; 41
Yu, He, Qi, Wang (CR37) 2021; 393
Chen, Chen (CR4) 2022; 359
He, Qin, Wang (CR18) 2021; 40
Ayman, Soliman (CR1) 2020; 58
Tian, Li, Xu, Liu (CR28) 2021; 358
Xu, Gao, Zhang (CR36) 2013
Li, Wang, Liu (CR22) 2020; 94
Zhou, Lam, Duan (CR40) 2010; 87
Dehghan, Shirilord (CR5) 2019; 38
Jia, Ng (CR21) 2021; 42
Song, Wang (CR27) 2020; 39
Dehghan, Shirilord (CR6) 2021; 37
Ding, Chen (CR9) 2005; 50
Varga (CR30) 2007; 40
He, Ng, Zeng (CR17) 2021; 14
Xie, Ma (CR35) 2016; 273
Wang, Song, Ji (CR32) 2021; 67
Chen, Ma (CR2) 2019; 2019
Ding, Chen (CR8) 2005; 41
Ding, Chen (CR7) 2005; 54
Wang, Song (CR31) 2021; 168
Wu, Zeng, Duan, Wu (CR34) 2010; 217
He, Wang, Zhao (CR20) 2023; 94
Lv, Chen, Zhang, Zhang (CR23) 2022; 359
Duan (CR11) 1993; 38
Ding, Wang, Xu, Wu (CR10) 2017; 354
Hajarian (CR14) 2021; 40
Song, Chen, Zhao (CR26) 2011; 35
He (CR15) 2019; 45
He (CR16) 2021; 69
Sheng (CR25) 2018; 355
Z Tian (2312_CR29) 2020; 357
M Dehghan (2312_CR5) 2019; 38
L Lv (2312_CR23) 2022; 359
Z Chen (2312_CR4) 2022; 359
X Sheng (2312_CR25) 2018; 355
Y Xie (2312_CR35) 2016; 273
Z Tian (2312_CR28) 2021; 358
B Zhou (2312_CR39) 2015; 352
M Hajarian (2312_CR14) 2021; 40
S Li (2312_CR22) 2020; 94
Z He (2312_CR16) 2021; 69
C Song (2312_CR26) 2011; 35
X Chen (2312_CR3) 2021; 358
Z He (2312_CR17) 2021; 14
Z He (2312_CR20) 2023; 94
B Zhou (2312_CR40) 2010; 87
A Varga (2312_CR30) 2007; 40
X Wang (2312_CR33) 2012; 218
S Xu (2312_CR36) 2013
G Duan (2312_CR11) 1993; 38
S Yu (2312_CR37) 2021; 393
L Chen (2312_CR2) 2019; 2019
C Song (2312_CR27) 2020; 39
Y Feng (2312_CR13) 2021; 40
H Zhang (2312_CR38) 2017; 354
M Ayman (2312_CR1) 2020; 58
2312_CR19
M Ramadan (2312_CR24) 2019; 27
Z He (2312_CR18) 2021; 40
W Wang (2312_CR31) 2021; 168
M Dehghan (2312_CR6) 2021; 37
A Wu (2312_CR34) 2010; 217
F Ding (2312_CR8) 2005; 41
F Ding (2312_CR10) 2017; 354
Z He (2312_CR15) 2019; 45
F Ding (2312_CR9) 2005; 50
G Duan (2312_CR12) 1996; 41
Z Jia (2312_CR21) 2021; 42
W Wang (2312_CR32) 2021; 67
F Ding (2312_CR7) 2005; 54
References_xml – volume: 50
  start-page: 1216
  issue: 8
  year: 2005
  end-page: 1221
  ident: CR9
  article-title: Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.852558
– volume: 354
  start-page: 1321
  issue: 3
  year: 2017
  end-page: 1339
  ident: CR10
  article-title: Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2016.11.030
– volume: 273
  start-page: 1257
  year: 2016
  end-page: 1269
  ident: CR35
  article-title: The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester-transpose matrix equation
  publication-title: Appl Math Comput
– volume: 87
  start-page: 515
  issue: 3
  year: 2010
  end-page: 527
  ident: CR40
  article-title: Gradient-based maximal convergence rate iterative method for solving linear matrix equations
  publication-title: Int J Comput Math
  doi: 10.1080/00207160802123458
– volume: 40
  start-page: 205
  year: 2021
  ident: CR18
  article-title: Some applications of a decomposition for five quaternion matrices in control system and color image processing
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01579-3
– volume: 168
  start-page: 251
  year: 2021
  end-page: 273
  ident: CR31
  article-title: Iterative algorithms for discrete-time periodic Sylvester matrix equations and its application in antilinear periodic system
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2021.06.006
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR2
  article-title: Developing CRS iterative methods for periodic Sylvester matrix equation
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-019-2036-1
– volume: 358
  start-page: 3051
  year: 2021
  end-page: 3076
  ident: CR28
  article-title: A relaxed MSIO iteration algorithm for solving coupled discrete Markovian jump Lyapunov equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2021.01.040
– volume: 40
  start-page: 175
  issue: 14
  year: 2007
  end-page: 180
  ident: CR30
  article-title: On computing minimal realizations of periodic descriptor systems
  publication-title: IFAC Proc Vol
  doi: 10.3182/20070829-3-RU-4912.00030
– volume: 94
  start-page: 1
  year: 2023
  ident: CR20
  article-title: Eigenvalues of quaternion tensors with applications to color video processing
  publication-title: J Sci Comput
  doi: 10.1007/s10915-022-02058-5
– volume: 217
  start-page: 130
  issue: 1
  year: 2010
  end-page: 142
  ident: CR34
  article-title: Iterative solutions to the extended Sylvester-conjugate matrix equatinos
  publication-title: Appl Math Comput
– volume: 37
  start-page: 489
  year: 2021
  end-page: 508
  ident: CR6
  article-title: Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method
  publication-title: Comput Appl Math
– volume: 359
  start-page: 9925
  issue: 17
  year: 2022
  end-page: 9951
  ident: CR4
  article-title: Conjugate gradient-based iterative algorithm for solving generalized periodic coupled Sylvester matrix equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.09.049
– volume: 54
  start-page: 95
  issue: 2
  year: 2005
  end-page: 107
  ident: CR7
  article-title: Iterative least-squares solutions of coupled Sylvester matrix equations
  publication-title: Syst Control Lett
  doi: 10.1016/j.sysconle.2004.06.008
– volume: 41
  start-page: 315
  issue: 2
  year: 2005
  end-page: 325
  ident: CR8
  article-title: Hierarchical gradient-based identification of multivariable discrete-time systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.10.010
– volume: 58
  start-page: 131
  year: 2020
  end-page: 142
  ident: CR1
  article-title: Robust multi-objective PSSs design via complex Kharitonov’s theorem
  publication-title: Eur J Control
  doi: 10.1016/j.ejcon.2020.07.008
– volume: 27
  start-page: 27
  year: 2019
  ident: CR24
  article-title: Iterative algorithm for the reflexive solutions of the generalized Sylvester matrix equation
  publication-title: Comput Appl Math
– volume: 393
  year: 2021
  ident: CR37
  article-title: The equivalence canonical form of five quaternion matrices with applications to imaging and Sylvester-type equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2021.113494
– volume: 45
  start-page: 1407
  year: 2019
  end-page: 1430
  ident: CR15
  article-title: The general solution to a system of coupled Sylvester-type quaternion tensor equations involving -Hermicity
  publication-title: Bull. Iran. Math. Soc.
  doi: 10.1007/s41980-019-00205-7
– volume: 39
  start-page: 282
  year: 2020
  ident: CR27
  article-title: Solutions to the linear transpose matrix equations and their application in control
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-020-01335-z
– volume: 14
  start-page: 692
  issue: 3
  year: 2021
  end-page: 713
  ident: CR17
  article-title: Generalized singular value decompositions for tensors and their applications
  publication-title: Numerical Mathematics: Theory, Methods and Applications
– volume: 357
  start-page: 3656
  year: 2020
  end-page: 3680
  ident: CR29
  article-title: A multi-step Smith-inner-outer iteration algorithm for solving coupled continuous Markovian jump Lyapunov matrix equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2020.02.026
– volume: 67
  start-page: 317
  year: 2021
  end-page: 341
  ident: CR32
  article-title: Iterative solution to a class of complex matrix equations and its application in time-varying linear system
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-020-01486-6
– volume: 354
  start-page: 7585
  year: 2017
  end-page: 7603
  ident: CR38
  article-title: New proof of the gradient-based iterative algorithm for a complex conjugate and transpose matrix equation
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.09.005
– ident: CR19
– volume: 42
  start-page: 616
  issue: 2
  year: 2021
  end-page: 634
  ident: CR21
  article-title: Structure preserving quaternion generalized minimal residual method
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/20M133751X
– volume: 358
  start-page: 5513
  year: 2021
  end-page: 5531
  ident: CR3
  article-title: An iterative algorithm for generalized periodic multiple coupled Sylvester matrix equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2021.05.012
– year: 2013
  ident: CR36
  publication-title: Numerical Linear Algebra
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  end-page: 19
  ident: CR14
  article-title: Conjugate gradient-like algorithms for constrained operator equation related to quadratic inverse eigenvalue problems
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01523-5
– volume: 69
  start-page: 3069
  issue: 16
  year: 2021
  end-page: 3091
  ident: CR16
  article-title: Some new results on a system of Sylvester-type quaternion matrix equations
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2019.1704213
– volume: 40
  start-page: 235
  year: 2021
  ident: CR13
  article-title: Lopsided DSS iteration method for solving complex Sylvester matrix equation
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01628-x
– volume: 359
  start-page: 10849
  issue: 18
  year: 2022
  end-page: 10866
  ident: CR23
  article-title: Gradient-based neural networks for solving periodic Sylvester matrix equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.05.023
– volume: 35
  start-page: 4675
  year: 2011
  end-page: 4683
  ident: CR26
  article-title: Iterative solutions to coupled Sylvester-transpose matrix equations
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.03.038
– volume: 41
  start-page: 612
  issue: 4
  year: 1996
  end-page: 614
  ident: CR12
  article-title: On the solution to the Sylvester matrix equation
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.489286
– volume: 38
  start-page: 276
  issue: 2
  year: 1993
  end-page: 280
  ident: CR11
  article-title: Solutions to matrix equation and their application to eigenstructure assignment in linear systems
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.250470
– volume: 38
  start-page: 146
  year: 2019
  ident: CR5
  article-title: The double-step scale splitting method for solving complex Sylvester matrix equation
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-019-0921-6
– volume: 218
  start-page: 5620
  year: 2012
  end-page: 5628
  ident: CR33
  article-title: A modified gradient based algorithm for solving Sylvester equations
  publication-title: Appl Math Comput
– volume: 352
  start-page: 2204
  issue: 5
  year: 2015
  end-page: 2228
  ident: CR39
  article-title: On semi-global stabilization of linear periodic systems with control magnitude and energy saturations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2015.03.011
– volume: 94
  start-page: 104
  year: 2020
  end-page: 113
  ident: CR22
  article-title: A global variant of the COCR method for the complex symmetric Sylvester matrix equation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.04.026
– volume: 355
  start-page: 4282
  year: 2018
  end-page: 4297
  ident: CR25
  article-title: A relaxed gradient based algorithm for solving generalized coupled Sylvester matrix equations
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2018.04.008
– volume-title: Numerical Linear Algebra
  year: 2013
  ident: 2312_CR36
– volume: 358
  start-page: 3051
  year: 2021
  ident: 2312_CR28
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2021.01.040
– volume: 352
  start-page: 2204
  issue: 5
  year: 2015
  ident: 2312_CR39
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2015.03.011
– volume: 358
  start-page: 5513
  year: 2021
  ident: 2312_CR3
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2021.05.012
– volume: 94
  start-page: 104
  year: 2020
  ident: 2312_CR22
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2021.04.026
– volume: 355
  start-page: 4282
  year: 2018
  ident: 2312_CR25
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2018.04.008
– volume: 35
  start-page: 4675
  year: 2011
  ident: 2312_CR26
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.03.038
– volume: 54
  start-page: 95
  issue: 2
  year: 2005
  ident: 2312_CR7
  publication-title: Syst Control Lett
  doi: 10.1016/j.sysconle.2004.06.008
– volume: 41
  start-page: 315
  issue: 2
  year: 2005
  ident: 2312_CR8
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.10.010
– volume: 168
  start-page: 251
  year: 2021
  ident: 2312_CR31
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2021.06.006
– ident: 2312_CR19
  doi: 10.1007/s13398-020-00826-2
– volume: 217
  start-page: 130
  issue: 1
  year: 2010
  ident: 2312_CR34
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2010.05.029
– volume: 42
  start-page: 616
  issue: 2
  year: 2021
  ident: 2312_CR21
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/20M133751X
– volume: 354
  start-page: 1321
  issue: 3
  year: 2017
  ident: 2312_CR10
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2016.11.030
– volume: 40
  start-page: 205
  year: 2021
  ident: 2312_CR18
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01579-3
– volume: 40
  start-page: 1
  issue: 4
  year: 2021
  ident: 2312_CR14
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01523-5
– volume: 39
  start-page: 282
  year: 2020
  ident: 2312_CR27
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-020-01335-z
– volume: 359
  start-page: 9925
  issue: 17
  year: 2022
  ident: 2312_CR4
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.09.049
– volume: 69
  start-page: 3069
  issue: 16
  year: 2021
  ident: 2312_CR16
  publication-title: Linear Multilinear Algebra
  doi: 10.1080/03081087.2019.1704213
– volume: 87
  start-page: 515
  issue: 3
  year: 2010
  ident: 2312_CR40
  publication-title: Int J Comput Math
  doi: 10.1080/00207160802123458
– volume: 38
  start-page: 146
  year: 2019
  ident: 2312_CR5
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-019-0921-6
– volume: 50
  start-page: 1216
  issue: 8
  year: 2005
  ident: 2312_CR9
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2005.852558
– volume: 359
  start-page: 10849
  issue: 18
  year: 2022
  ident: 2312_CR23
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2022.05.023
– volume: 218
  start-page: 5620
  year: 2012
  ident: 2312_CR33
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2011.11.055
– volume: 45
  start-page: 1407
  year: 2019
  ident: 2312_CR15
  publication-title: Bull. Iran. Math. Soc.
  doi: 10.1007/s41980-019-00205-7
– volume: 40
  start-page: 175
  issue: 14
  year: 2007
  ident: 2312_CR30
  publication-title: IFAC Proc Vol
  doi: 10.3182/20070829-3-RU-4912.00030
– volume: 273
  start-page: 1257
  year: 2016
  ident: 2312_CR35
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2015.07.022
– volume: 14
  start-page: 692
  issue: 3
  year: 2021
  ident: 2312_CR17
  publication-title: Numerical Mathematics: Theory, Methods and Applications
– volume: 37
  start-page: 489
  year: 2021
  ident: 2312_CR6
  publication-title: Comput Appl Math
– volume: 2019
  start-page: 1
  year: 2019
  ident: 2312_CR2
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-019-2036-1
– volume: 94
  start-page: 1
  year: 2023
  ident: 2312_CR20
  publication-title: J Sci Comput
  doi: 10.1007/s10915-022-02058-5
– volume: 58
  start-page: 131
  year: 2020
  ident: 2312_CR1
  publication-title: Eur J Control
  doi: 10.1016/j.ejcon.2020.07.008
– volume: 40
  start-page: 235
  year: 2021
  ident: 2312_CR13
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-021-01628-x
– volume: 38
  start-page: 276
  issue: 2
  year: 1993
  ident: 2312_CR11
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.250470
– volume: 41
  start-page: 612
  issue: 4
  year: 1996
  ident: 2312_CR12
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/9.489286
– volume: 67
  start-page: 317
  year: 2021
  ident: 2312_CR32
  publication-title: J Appl Math Comput
  doi: 10.1007/s12190-020-01486-6
– volume: 27
  start-page: 27
  year: 2019
  ident: 2312_CR24
  publication-title: Comput Appl Math
– volume: 357
  start-page: 3656
  year: 2020
  ident: 2312_CR29
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2020.02.026
– volume: 393
  year: 2021
  ident: 2312_CR37
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2021.113494
– volume: 354
  start-page: 7585
  year: 2017
  ident: 2312_CR38
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.09.005
SSID ssj0037144
Score 2.2623305
Snippet Using tools like the Kronecker product and the vector operator, various Sylvester matrix equations can always be converted into the form A x = f , motivating...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Title Block-row and block-column iterative algorithms for solving linear matrix equation
URI https://link.springer.com/article/10.1007/s40314-023-02312-y
Volume 42
WOSCitedRecordID wos000983309900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: RSV
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejB6VScX-TgTQNtEtv0qOLw4pD5wW4lnypuna5V3H9v0qaFgQz00EMhKeW9l_d7ycv7PQBObEjPpbUUZGy0jqiWDPGEGxRZdNdYUMWJLJtNxP0-Gw6TO18Ulte33euUZOmpm2I36pjWkcUY94QYzZbBioU75ho2DO6fav_rKOhcLtniHkMkCogvlfn9G_NwNJ8LLSGm1_7fz22CDR9SwovKBrbAks46oO3DS-gXb94B67cNRWu-DQaXFsbekN2FQ54pKMo36XxVBiuqZesHIR89T6avxcs4hza6hdZQ3QEEdLEpn8Kx4_f_hvqj4gvfAY-964erG-QbLCCJk7BAsY5UorQxUoXKYMMVTRhhCseGYqs3ymNmiEqo3ZTIiMSBkJEJuEgE4SHWmOyCVjbJ9B6AVHBNsJA6Ce1cLBgREgexCqNzYoQIuyCs5ZxKzz7ummCM0oY3uRRhasWXliJMZ11w2sx5r7g3Fo4-q1WT-nWYLxi-_7fhB2ANl9p15y-HoFVMP_URWJVfxWs-PS4N8Ac_8tco
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FdSDq6vi-szBmwbaJPZxVFFW1EV0lb2VPFV0u9quov_epNsWBFnQQw-FSSkzk_kmmcwXgD2b0nNpPQUbm61jpmWEecwNDiy6ayKY4lQWl02E3W7U78fXZVNYXp12r0qSRaSum92YY1rHFmPc4xP8NQ0zzCKWY8y_ub2v4q-joHO1ZIt7EaaBR8tWmd-_8ROOftZCC4g5a_7v55ZgsUwp0dHYB5ZhSqctaJbpJSonb96ChauaojVfgZtjC2PP2K7CEU8VEsWbdLEqRWOqZRsHEX95GGZPo8dBjmx2i6yjug0I5HJTnqGB4_f_RPptzBe-Cndnp72TDi4vWMCSxP4IhzpQsdLGSOUrQwxXLI5opEhoGLF2YzyMDFUxs4sSGdDQEzIwHhexoNwnmtA1aKTDVK8DYoJrSoTUsW_HEhFRIYkXKj84pEYIvw1-pedEluzj7hKMl6TmTS5UmFj1JYUKk6827NdjXsfcGxOlDyrTJOU8zCeIb_xNfBfmOr2ry-TyvHuxCfOksLTbi9mCxih719swKz9GT3m2UzjjN18v2gw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH1wPfE2D75p2G0Sezx6LYq6iBe-lZy6uFt1W8X99ya9UBBBfOhDYVLKzGSOTOYbgG0b0nNpNQUbG61jpmWIecQN9q1310QwxanMh00EnU54fx9dfuniz2-7VyXJoqfBoTQlWfNFmWbd-MYc6jq2_sY9HsHDURhn7iK9y9ev7ypb7ODoXF3Z-sAQU79Fy7aZn7_x3TV9r4vm7qbd-P-PzsJMGWqi_UI35mBEJ_PQKMNOVG7qdB6mL2ro1nQBrg6se3vCNjtHPFFI5G_S2bAEFRDM1j4i3nt4HnSzx36KbNSLrAK7gwnkYlY-QH2H-_-B9GuBI74It-3jm8MTXA5ewJJEXoYD7atIaWOk8pQhhisWhTRUJDCMWHkyHoSGqojZZEX6NGgJ6ZsWF5Gg3COa0CUYS54TvQyICa4pEVJHnl1LREiFJK1Aef4eNUJ4K-BVPI9liUruhmP04hpPOWdhbNkX5yyMhyuwU695KTA5fqXercQUl_sz_YV89W_kWzB5edSOz087Z2swRXJBuyOadRjLBm96Aybke9ZNB5u5Xn4C78ri8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block-row+and+block-column+iterative+algorithms+for+solving+linear+matrix+equation&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Wang%2C+Wenli&rft.au=Qu%2C+Gangrong&rft.au=Song%2C+Caiqin&rft.au=Liu%2C+Duo&rft.date=2023-06-01&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=42&rft.issue=4&rft_id=info:doi/10.1007%2Fs40314-023-02312-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40314_023_02312_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon