Stochastic Planning of Integrated Energy System via Frank-Copula Function and Scenario Reduction

Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid Vol. 13; no. 1; pp. 202 - 212
Main Authors: Lin, Shunfu, Liu, Chitao, Shen, Yunwei, Li, Fangxing, Li, Dongdong, Fu, Yang
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1949-3053, 1949-3061
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period, a multi-scenario stochastic programming model of an integrated energy system (IES) is constructed in this paper. Scenarios of wind and solar power output are generated based on non-parametric kernel density estimation and the Frank-Copula function; scenarios of load demands are generated through DeST software, and energy prices and pollutant emission factors are generated corresponding to a uniform distribution. Then the generated scenario results of wind and solar power output and load demands are reduced by <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering; the generated scenarios of energy prices and pollutant emission factors are reduced by discrete approximation of continuous distribution based on Gaussian quadrature. An illustrative example with 8 cases is performed to analyze the influences of each uncertain parameter on the optimal configuration and economy of the IES.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2021.3119939