Stochastic Planning of Integrated Energy System via Frank-Copula Function and Scenario Reduction

Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 13; číslo 1; s. 202 - 212
Hlavní autoři: Lin, Shunfu, Liu, Chitao, Shen, Yunwei, Li, Fangxing, Li, Dongdong, Fu, Yang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period, a multi-scenario stochastic programming model of an integrated energy system (IES) is constructed in this paper. Scenarios of wind and solar power output are generated based on non-parametric kernel density estimation and the Frank-Copula function; scenarios of load demands are generated through DeST software, and energy prices and pollutant emission factors are generated corresponding to a uniform distribution. Then the generated scenario results of wind and solar power output and load demands are reduced by <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering; the generated scenarios of energy prices and pollutant emission factors are reduced by discrete approximation of continuous distribution based on Gaussian quadrature. An illustrative example with 8 cases is performed to analyze the influences of each uncertain parameter on the optimal configuration and economy of the IES.
AbstractList Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period, a multi-scenario stochastic programming model of an integrated energy system (IES) is constructed in this paper. Scenarios of wind and solar power output are generated based on non-parametric kernel density estimation and the Frank-Copula function; scenarios of load demands are generated through DeST software, and energy prices and pollutant emission factors are generated corresponding to a uniform distribution. Then the generated scenario results of wind and solar power output and load demands are reduced by <inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula>-means clustering; the generated scenarios of energy prices and pollutant emission factors are reduced by discrete approximation of continuous distribution based on Gaussian quadrature. An illustrative example with 8 cases is performed to analyze the influences of each uncertain parameter on the optimal configuration and economy of the IES.
Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple uncertainties of wind and solar power output, load demands, and energy prices as well as pollutant emission factors during the planning period, a multi-scenario stochastic programming model of an integrated energy system (IES) is constructed in this paper. Scenarios of wind and solar power output are generated based on non-parametric kernel density estimation and the Frank-Copula function; scenarios of load demands are generated through DeST software, and energy prices and pollutant emission factors are generated corresponding to a uniform distribution. Then the generated scenario results of wind and solar power output and load demands are reduced by [Formula Omitted]-means clustering; the generated scenarios of energy prices and pollutant emission factors are reduced by discrete approximation of continuous distribution based on Gaussian quadrature. An illustrative example with 8 cases is performed to analyze the influences of each uncertain parameter on the optimal configuration and economy of the IES.
Author Li, Fangxing
Fu, Yang
Li, Dongdong
Shen, Yunwei
Lin, Shunfu
Liu, Chitao
Author_xml – sequence: 1
  givenname: Shunfu
  orcidid: 0000-0002-2907-1211
  surname: Lin
  fullname: Lin, Shunfu
  email: shunfulin@shiep.edu.cn
  organization: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China
– sequence: 2
  givenname: Chitao
  surname: Liu
  fullname: Liu, Chitao
  organization: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China
– sequence: 3
  givenname: Yunwei
  orcidid: 0000-0002-3913-8870
  surname: Shen
  fullname: Shen, Yunwei
  organization: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China
– sequence: 4
  givenname: Fangxing
  orcidid: 0000-0003-1060-7618
  surname: Li
  fullname: Li, Fangxing
  email: fli6@utk.edu
  organization: Department of EECS, The University of Tennessee, Knoxville, TN, USA
– sequence: 5
  givenname: Dongdong
  orcidid: 0000-0002-5012-8235
  surname: Li
  fullname: Li, Dongdong
  organization: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China
– sequence: 6
  givenname: Yang
  surname: Fu
  fullname: Fu, Yang
  organization: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China
BookMark eNp9kE1LAzEQhoNUsNbeBS8Bz1szm_3KUUpbCwXFrec1zc7W1G1Ss1mh_96tLT14MDBkZnifmeG9Jj1jDRJyC2wEwMTDMp-NQhbCiAMIwcUF6YOIRMBZAr1zHvMrMmyaDese5zwJRZ-8596qD9l4rehLLY3RZk1tRefG49pJjyWdGHTrPc33jcct_daSTp00n8HY7tq6K1qjvLaGSlPSXKGRTlv6imX7274hl5WsGxye_gF5m06W46dg8Tybjx8XgQoF-CDNooSztAsUqqywRMxYnJVslUmRrcpKAsiUl6sYI1UlCUujMFKi4hhmqDjwAbk_zt05-9Vi44uNbZ3pVhZhApynHCLWqZKjSjnbNA6rQmkvD3d6J3VdACsOhhadocXB0OJkaAeyP-DO6a10-_-QuyOiEfEsFwlAHAH_AZKDgtw
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1016_j_ress_2024_110086
crossref_primary_10_1109_ACCESS_2023_3347490
crossref_primary_10_1016_j_energy_2024_132875
crossref_primary_10_1109_ACCESS_2023_3327640
crossref_primary_10_3390_sym17050683
crossref_primary_10_1109_TPWRS_2024_3523220
crossref_primary_10_1016_j_renene_2024_121533
crossref_primary_10_1016_j_apenergy_2025_125454
crossref_primary_10_3390_pr12091921
crossref_primary_10_3390_en17184718
crossref_primary_10_1016_j_ijepes_2024_110001
crossref_primary_10_2478_amns_2023_1_00147
crossref_primary_10_3389_fenrg_2022_1012367
crossref_primary_10_1016_j_energy_2022_124802
crossref_primary_10_1016_j_energy_2023_129011
crossref_primary_10_3390_electronics14010059
crossref_primary_10_1016_j_apenergy_2022_120205
crossref_primary_10_1016_j_energy_2023_129212
crossref_primary_10_1016_j_epsr_2025_111569
crossref_primary_10_48084_etasr_11011
crossref_primary_10_1016_j_energy_2025_134388
crossref_primary_10_3390_en18102582
crossref_primary_10_1016_j_energy_2024_131777
crossref_primary_10_1109_TKDE_2024_3462770
crossref_primary_10_1016_j_ijepes_2022_108529
crossref_primary_10_1016_j_renene_2025_123101
crossref_primary_10_1016_j_ijepes_2024_110231
crossref_primary_10_1016_j_tafmec_2024_104680
crossref_primary_10_3390_en18061405
crossref_primary_10_3390_pr12010084
crossref_primary_10_1016_j_apenergy_2025_125629
crossref_primary_10_1016_j_ijepes_2022_108854
crossref_primary_10_3390_en16073180
crossref_primary_10_1016_j_ref_2025_100735
crossref_primary_10_1109_TSG_2024_3364182
crossref_primary_10_3390_wevj16040206
crossref_primary_10_3390_en15166081
crossref_primary_10_3390_su151914247
crossref_primary_10_1016_j_segan_2024_101578
crossref_primary_10_1016_j_compchemeng_2025_109323
crossref_primary_10_1016_j_renene_2024_121107
crossref_primary_10_1016_j_epsr_2022_108813
crossref_primary_10_1109_TSG_2024_3432750
crossref_primary_10_1016_j_apenergy_2025_126051
crossref_primary_10_1016_j_egyr_2024_08_079
crossref_primary_10_1016_j_energy_2025_137117
crossref_primary_10_1016_j_epsr_2023_109947
crossref_primary_10_1016_j_est_2024_113913
crossref_primary_10_1016_j_renene_2024_122057
crossref_primary_10_1049_rpg2_12915
crossref_primary_10_3390_pr12040845
crossref_primary_10_3390_su16062247
crossref_primary_10_1088_1742_6596_3036_1_012007
crossref_primary_10_1016_j_epsr_2024_111093
crossref_primary_10_1016_j_apenergy_2024_122912
crossref_primary_10_1049_gtd2_12657
crossref_primary_10_1049_rpg2_13054
Cites_doi 10.1109/TSG.2017.2762001
10.1109/TSG.2016.2572402
10.1109/TPWRS.2016.2645858
10.1109/TPWRS.2018.2807794
10.1109/TSTE.2018.2789398
10.1109/TSG.2017.2787790
10.1016/j.apenergy.2019.01.211
10.1098/rsta.2016.0305
10.1016/j.tust.2018.03.019
10.1109/TSG.2019.2910930
10.1016/j.apenergy.2018.04.019
10.1016/j.applthermaleng.2016.09.049
10.1109/TSTE.2016.2590460
10.1109/ACCESS.2019.2955515
10.1016/j.apenergy.2019.01.160
10.1109/TSG.2017.2767860
10.1109/TSG.2018.2871393
10.1109/OAJPE.2020.2967292
10.1109/TSG.2018.2828146
10.1109/TSG.2015.2501818
10.1287/mnsc.29.3.352
10.1109/TSG.2017.2737024
10.1049/iet-gtd.2018.6895
10.1109/OAJPE.2020.3030193
10.1109/TSTE.2017.2728098
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2021.3119939
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 212
ExternalDocumentID 10_1109_TSG_2021_3119939
9611541
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51977127
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19020500800
  funderid: 10.13039/501100003399
– fundername: “Shuguang Program” (20SG52) Shanghai Education Development Foundation and Shanghai Municipal Education Commission
  funderid: 10.13039/501100003395
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-7846307630e9cdfedee8058d0b8a98bdfa11a73db5e4cf6607424c9f3e28ec313
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733951900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:57:47 EDT 2025
Sat Nov 29 03:45:59 EST 2025
Tue Nov 18 21:39:57 EST 2025
Wed Aug 27 05:06:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7846307630e9cdfedee8058d0b8a98bdfa11a73db5e4cf6607424c9f3e28ec313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5012-8235
0000-0002-2907-1211
0000-0003-1060-7618
0000-0002-3913-8870
PQID 2613373140
PQPubID 2040408
PageCount 11
ParticipantIDs proquest_journals_2613373140
ieee_primary_9611541
crossref_citationtrail_10_1109_TSG_2021_3119939
crossref_primary_10_1109_TSG_2021_3119939
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
Liu (ref25) 2011; 35
ref1
ref17
ref16
ref19
ref18
(ref26) 2018
ref24
ref23
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1109/TSG.2017.2762001
– ident: ref6
  doi: 10.1109/TSG.2016.2572402
– ident: ref22
  doi: 10.1109/TPWRS.2016.2645858
– ident: ref15
  doi: 10.1109/TPWRS.2018.2807794
– volume: 35
  start-page: 11
  issue: 18
  year: 2011
  ident: ref25
  article-title: Optimal siting and sizing of distributed generators considering plug-in electric vehicles
  publication-title: Autom. Elect. Power Syst.
– ident: ref11
  doi: 10.1109/TSTE.2018.2789398
– ident: ref17
  doi: 10.1109/TSG.2017.2787790
– ident: ref9
  doi: 10.1016/j.apenergy.2019.01.211
– ident: ref20
  doi: 10.1098/rsta.2016.0305
– ident: ref23
  doi: 10.1016/j.tust.2018.03.019
– ident: ref1
  doi: 10.1109/TSG.2019.2910930
– ident: ref8
  doi: 10.1016/j.apenergy.2018.04.019
– ident: ref24
  doi: 10.1016/j.applthermaleng.2016.09.049
– ident: ref13
  doi: 10.1109/TSTE.2016.2590460
– ident: ref12
  doi: 10.1109/ACCESS.2019.2955515
– ident: ref5
  doi: 10.1016/j.apenergy.2019.01.160
– ident: ref19
  doi: 10.1109/TSG.2017.2767860
– ident: ref7
  doi: 10.1109/TSG.2018.2871393
– ident: ref4
  doi: 10.1109/OAJPE.2020.2967292
– ident: ref14
  doi: 10.1109/TSG.2018.2828146
– ident: ref21
  doi: 10.1109/TSG.2015.2501818
– ident: ref27
  doi: 10.1287/mnsc.29.3.352
– ident: ref16
  doi: 10.1109/TSG.2017.2737024
– volume-title: The Emission Reduction Project China Regional Power Grid Baseline Emission Factors From 2006–2016
  year: 2018
  ident: ref26
– ident: ref18
  doi: 10.1049/iet-gtd.2018.6895
– ident: ref10
  doi: 10.1109/OAJPE.2020.3030193
– ident: ref3
  doi: 10.1109/TSTE.2017.2728098
SSID ssj0000333629
Score 2.5735033
Snippet Uncertainty introduces both significant complexity and the high risk of suboptimal investment decisions into power system planning. Considering the multiple...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Clustering
Cogeneration
Costs
Electrical loads
Emissions control
Energy prices
Frank-Copula
Integrated energy system (IES)
Integrated energy systems
multi-scenario stochastic programming model
multiple uncertainties
Normal distribution
Optimization
Parameter uncertainty
Planning
Pollutants
Power grids
Quadratures
scenario generation and reduction
Solar energy
Stochastic models
Stochastic processes
Stochastic programming
Uncertainty
Title Stochastic Planning of Integrated Energy System via Frank-Copula Function and Scenario Reduction
URI https://ieeexplore.ieee.org/document/9611541
https://www.proquest.com/docview/2613373140
Volume 13
WOSCitedRecordID wos000733951900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDF8G4tmmb5ijDqSBD3ITdapa84EBa2br9_SbpDxRF8FAoTQIhX5O8Ly_vewhdhMAjUyAJE6EiljEQ4WtKNNcxU8oPtHI6s49sNEqmU_7UQldNLAwAuMtncG1fnS9f5XJlj8r6PLbiMYbrbDAWl7FazXmKR6lZi7lzIofWnR_R2ivp8f5kfGe4YOAbimpvrPFvu5BLq_JjLXYbzHD3f13bQzuVIYlvSuT3UQuyA7T9RV6wg17HRS7fhFVixnVyIpxr_FBLRCh860L_cKlbjtdzgV0WdzJweb3w0Ox6FjksMoXHEjLDrHP8bOVe7edD9DK8nQzuSZVRgciA-wVhxtowk9o8wKXSoAASL0qUN0sET2ZKC98XjKpZBKHUcWyJcyi5phAkIKlPj1A7yzM4RnhmVgdlbDefRiJkoRJgGiseRcJYnJyLLurXI5zKSm7cZr14Tx3t8HhqMEktJmmFSRddNi0-SqmNP-p2LAZNvWr4u6hXg5hWc3GZ2j5SRg2TPPm91SnaCmxQgztY6aF2sVjBGdqU62K-XJy73-wTIdPP-A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5kCuqDv8Xp1Dz4IljXNu3aPMrYVJxD3ATfapZcUJBW3Obfby5rh6IIPhRKk0DI1yT35XLfAZxEKGJboLxERtojxuDJwHDPCNNKtA5Co53ObC_p99PHR3G3AGfzWBhEdJfP8JxenS9fF2pKR2VN0SLxGMt1FilzVhmtNT9R8Tm3q7FwbuSIHPoxr_ySvmgOB5eWDYaBJal0Z01824dcYpUfq7HbYrrr_-vcBqyVpiS7mGG_CQuYb8HqF4HBbXgaTAr1LEmLmVXpiVhh2HUlEqFZxwX_sZlyOft4kczlcffaLrMX69p9j7BjMtdsoDC33Lpg9yT4Sp934KHbGbavvDKngqdCEUy8xNobdlrbB4XSBjVi6sep9kepFOlIGxkEMuF6FGOkTKtF1DlSwnAMU1Q84LtQy4sc94CN7PqgrfUW8FhGSaQl2sZaxLG0NqcQsg7NaoQzVQqOU96L18wRD19kFpOMMMlKTOpwOm_xNhPb-KPuNmEwr1cOfx0aFYhZORvHGfWRJ9xyyf3fWx3D8tXwtpf1rvs3B7ASUoiDO2ZpQG3yPsVDWFIfk5fx-5H75T4BIhLTQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+Planning+of+Integrated+Energy+System+via+Frank-Copula+Function+and+Scenario+Reduction&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Lin%2C+Shunfu&rft.au=Liu%2C+Chitao&rft.au=Shen%2C+Yunwei&rft.au=Li%2C+Fangxing&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=13&rft.issue=1&rft.spage=202&rft_id=info:doi/10.1109%2FTSG.2021.3119939&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon