Learning to Detect

In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 67; číslo 10; s. 2554 - 2564
Hlavní autoři: Samuel, Neev, Diskin, Tzvi, Wiesel, Ami
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the proposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2019.2899805