Learning to Detect

In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 67; číslo 10; s. 2554 - 2564
Hlavní autoři: Samuel, Neev, Diskin, Tzvi, Wiesel, Ami
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the proposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions.
AbstractList In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the proposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions.
Author Samuel, Neev
Diskin, Tzvi
Wiesel, Ami
Author_xml – sequence: 1
  givenname: Neev
  surname: Samuel
  fullname: Samuel, Neev
  email: neev.samuel@mail.huji.ac.il
  organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel
– sequence: 2
  givenname: Tzvi
  surname: Diskin
  fullname: Diskin, Tzvi
  email: zvidiskin@gmail.com
  organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel
– sequence: 3
  givenname: Ami
  surname: Wiesel
  fullname: Wiesel, Ami
  email: amiw@cs.huji.ac.il
  organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel
BookMark eNp9jz1LA0EQhheJYBJtrASbgPWds3v7WUqMH3CgYAS7ZfeckwvxLu5uCv-9GxIsLGSKd4r3meGZkFE_9EjIBYWSUjDXy5fnkgE1JdPGaBBHZEwNpwVwJUd5B1EVQqu3EzKJcQVAOTdyTM5rdKHv-o9ZGma3mLBJp-S4deuIZ4eckte7xXL-UNRP94_zm7pomKGpUIJxJ7BqhfSCN1yCAiO0gTxcoZNeGqa8dxI9R-XeG_TKKQDHhVfeVVNytb-7CcPXFmOyq2Eb-vzSMkYBOKu0zi25bzVhiDFga5suudQNfQquW1sKdudvs7_d-duDfwbhD7gJ3acL3_8hl3ukQ8TfupY8C4vqB8G_ZRI
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3121724
crossref_primary_10_1109_JSAC_2020_3036954
crossref_primary_10_1109_TVT_2024_3430353
crossref_primary_10_1109_ACCESS_2021_3073325
crossref_primary_10_1109_TWC_2020_2976004
crossref_primary_10_1016_j_sigpro_2024_109554
crossref_primary_10_1016_j_procs_2021_04_091
crossref_primary_10_3390_s25030669
crossref_primary_10_1109_TCCN_2022_3151935
crossref_primary_10_1109_TWC_2020_3032663
crossref_primary_10_1007_s11265_020_01631_1
crossref_primary_10_1109_TWC_2023_3261782
crossref_primary_10_1049_ell2_13155
crossref_primary_10_1109_TCOMM_2022_3186404
crossref_primary_10_1007_s11276_024_03788_0
crossref_primary_10_3390_signals1010005
crossref_primary_10_1088_2040_8986_ad08dc
crossref_primary_10_3390_electronics14020335
crossref_primary_10_1109_TSUSC_2023_3324339
crossref_primary_10_1109_TIE_2023_3243301
crossref_primary_10_1109_TCOMM_2023_3237241
crossref_primary_10_1007_s11235_024_01231_5
crossref_primary_10_1109_LCOMM_2024_3451655
crossref_primary_10_1016_j_sigpro_2024_109543
crossref_primary_10_1109_TSP_2021_3076900
crossref_primary_10_1109_TVT_2023_3307449
crossref_primary_10_1109_TSP_2024_3359083
crossref_primary_10_1007_s11276_023_03545_9
crossref_primary_10_1109_TWC_2021_3054520
crossref_primary_10_1364_JOCN_492770
crossref_primary_10_1109_TWC_2020_2977340
crossref_primary_10_1109_LCOMM_2020_3011560
crossref_primary_10_1109_TCOMM_2023_3321735
crossref_primary_10_1016_j_dsp_2024_104627
crossref_primary_10_1109_TSP_2022_3180552
crossref_primary_10_1109_MWC_001_1900473
crossref_primary_10_1155_2022_8992478
crossref_primary_10_1002_inst_12416
crossref_primary_10_1109_TSP_2023_3310279
crossref_primary_10_1109_JPROC_2019_2957798
crossref_primary_10_1109_TCCN_2022_3168725
crossref_primary_10_1109_LWC_2024_3415175
crossref_primary_10_1109_TWC_2024_3514931
crossref_primary_10_1109_TCOMM_2022_3141399
crossref_primary_10_1109_ACCESS_2020_2978253
crossref_primary_10_1109_COMST_2021_3135542
crossref_primary_10_1109_LWC_2021_3111075
crossref_primary_10_1186_s13634_022_00885_0
crossref_primary_10_1109_TWC_2025_3541144
crossref_primary_10_1109_ACCESS_2023_3311821
crossref_primary_10_1109_ACCESS_2019_2937982
crossref_primary_10_1016_j_rineng_2025_105409
crossref_primary_10_1109_TCOMM_2023_3292468
crossref_primary_10_1109_TCOMM_2024_3454026
crossref_primary_10_1109_JIOT_2024_3368516
crossref_primary_10_1109_JSAC_2022_3180794
crossref_primary_10_1051_matecconf_202133604007
crossref_primary_10_1109_TSP_2022_3205478
crossref_primary_10_1007_s11425_023_2293_3
crossref_primary_10_1109_TCOMM_2023_3247733
crossref_primary_10_1016_j_indcrop_2023_116455
crossref_primary_10_1109_TSP_2020_3035832
crossref_primary_10_1186_s13677_020_00168_9
crossref_primary_10_1109_JSAC_2024_3443759
crossref_primary_10_1109_TWC_2019_2924220
crossref_primary_10_1109_TVT_2025_3534820
crossref_primary_10_1109_ACCESS_2020_3043004
crossref_primary_10_1109_TWC_2023_3292124
crossref_primary_10_1109_TCOMM_2022_3157314
crossref_primary_10_1109_TCOMM_2022_3218630
crossref_primary_10_1109_TWC_2023_3235059
crossref_primary_10_1109_JSAC_2025_3531558
crossref_primary_10_1049_cmu2_12424
crossref_primary_10_1109_TWC_2021_3100133
crossref_primary_10_1109_TWC_2024_3516738
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1109_TVT_2024_3360511
crossref_primary_10_1109_TWC_2022_3230662
crossref_primary_10_1109_TWC_2023_3272525
crossref_primary_10_1109_JPHOT_2019_2938231
crossref_primary_10_1016_j_phycom_2021_101343
crossref_primary_10_1109_TWC_2024_3422794
crossref_primary_10_1109_JPROC_2023_3247480
crossref_primary_10_1007_s11265_022_01827_7
crossref_primary_10_1109_TWC_2022_3157467
crossref_primary_10_1109_TMI_2019_2941271
crossref_primary_10_1109_TWC_2020_2981919
crossref_primary_10_1109_TVT_2024_3445912
crossref_primary_10_1109_TWC_2023_3241841
crossref_primary_10_1109_TWC_2023_3268945
crossref_primary_10_1109_ACCESS_2022_3206814
crossref_primary_10_1109_JSAC_2021_3087224
crossref_primary_10_1109_TWC_2022_3164203
crossref_primary_10_1109_TWC_2022_3181219
crossref_primary_10_1109_TVT_2022_3201961
crossref_primary_10_1109_TCOMM_2023_3294957
crossref_primary_10_1109_TWC_2020_3026471
crossref_primary_10_1016_j_aeue_2019_152964
crossref_primary_10_1109_TSP_2022_3143372
crossref_primary_10_1142_S0129065725500534
crossref_primary_10_1109_TWC_2020_3033334
crossref_primary_10_1109_TSP_2023_3284373
crossref_primary_10_1109_TWC_2021_3076527
crossref_primary_10_1109_LCOMM_2019_2950201
crossref_primary_10_1109_TCOMM_2022_3219141
crossref_primary_10_1109_TSP_2021_3117503
crossref_primary_10_1109_MWC_003_21003437
crossref_primary_10_1016_j_phycom_2024_102438
crossref_primary_10_1109_TCOMM_2023_3337272
crossref_primary_10_1109_COMST_2023_3300664
crossref_primary_10_1109_TSP_2023_3238275
crossref_primary_10_1016_j_aeue_2022_154350
crossref_primary_10_1109_ACCESS_2019_2928049
crossref_primary_10_1109_ACCESS_2020_2979156
crossref_primary_10_1109_TCOMM_2023_3299974
crossref_primary_10_3390_su16167039
crossref_primary_10_1109_ACCESS_2019_2927997
crossref_primary_10_1109_LCOMM_2020_2989672
crossref_primary_10_1109_TWC_2020_2996144
crossref_primary_10_1109_TCCN_2023_3235763
crossref_primary_10_1109_TWC_2025_3561242
crossref_primary_10_1109_ACCESS_2020_3006265
crossref_primary_10_1109_TCOMM_2023_3348839
crossref_primary_10_3390_app10134622
crossref_primary_10_1109_TVT_2022_3230143
crossref_primary_10_1109_LWC_2023_3234239
crossref_primary_10_1109_ACCESS_2021_3104660
crossref_primary_10_1109_ACCESS_2020_3044097
crossref_primary_10_1109_TWC_2020_3030882
crossref_primary_10_1109_TCOMM_2021_3114682
crossref_primary_10_1109_TWC_2024_3509713
crossref_primary_10_1109_LCOMM_2022_3197974
crossref_primary_10_1109_TWC_2021_3055202
crossref_primary_10_1109_ACCESS_2021_3125002
crossref_primary_10_1109_TSP_2023_3263255
crossref_primary_10_1109_TWC_2023_3336911
crossref_primary_10_1007_s00340_020_07571_9
crossref_primary_10_1016_j_phycom_2025_102637
crossref_primary_10_1109_ACCESS_2020_2985083
crossref_primary_10_1109_TWC_2022_3170510
crossref_primary_10_1109_JSAC_2021_3126087
crossref_primary_10_1109_TCCN_2020_2985371
crossref_primary_10_1109_ACCESS_2023_3310238
crossref_primary_10_1109_LWC_2023_3348933
crossref_primary_10_1109_TR_2022_3148114
crossref_primary_10_1109_TWC_2023_3330816
crossref_primary_10_1109_TVT_2022_3166399
crossref_primary_10_1109_TVT_2022_3226799
crossref_primary_10_1109_LCOMM_2020_3018260
crossref_primary_10_1109_MWC_013_2100652
crossref_primary_10_1016_j_aeue_2023_154712
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_TWC_2021_3123220
crossref_primary_10_1109_ACCESS_2022_3221800
crossref_primary_10_1109_TVT_2024_3392856
crossref_primary_10_1109_TWC_2022_3193885
crossref_primary_10_1109_ACCESS_2020_3035961
crossref_primary_10_1109_OJVT_2025_3574934
crossref_primary_10_1109_TSP_2023_3239170
crossref_primary_10_1109_ACCESS_2020_2987375
crossref_primary_10_1109_TCOMM_2019_2960361
crossref_primary_10_3390_rs12172729
crossref_primary_10_1016_j_dsp_2023_104027
crossref_primary_10_1109_TWC_2021_3082844
crossref_primary_10_1109_TWC_2023_3271521
crossref_primary_10_1016_j_phycom_2023_102189
crossref_primary_10_1109_JSAC_2021_3126080
crossref_primary_10_1109_LSP_2022_3179958
crossref_primary_10_1109_LCOMM_2020_3045665
crossref_primary_10_1109_TVT_2023_3325367
crossref_primary_10_1109_LWC_2020_3007198
crossref_primary_10_1016_j_compeleceng_2024_109608
crossref_primary_10_1109_TWC_2021_3068302
crossref_primary_10_1109_JIOT_2023_3274209
crossref_primary_10_1109_LCOMM_2022_3206414
crossref_primary_10_1109_TVT_2023_3241440
crossref_primary_10_1109_TCOMM_2021_3058999
crossref_primary_10_1109_TWC_2021_3051317
crossref_primary_10_1109_MSP_2023_3261505
crossref_primary_10_1038_s44172_023_00108_w
crossref_primary_10_1109_TSP_2022_3229944
crossref_primary_10_1109_TWC_2022_3155945
crossref_primary_10_1109_TCOMM_2024_3394039
crossref_primary_10_1109_TVT_2021_3099640
crossref_primary_10_1109_TWC_2022_3227636
crossref_primary_10_1109_TCOMM_2022_3209888
crossref_primary_10_1109_TCCN_2023_3279260
crossref_primary_10_1109_TWC_2022_3190435
crossref_primary_10_33769_aupse_1140193
crossref_primary_10_1109_TAES_2024_3443020
crossref_primary_10_1109_TVT_2019_2922369
crossref_primary_10_1109_ACCESS_2024_3494752
crossref_primary_10_1109_JSAC_2021_3126064
crossref_primary_10_1109_TSP_2020_3048232
crossref_primary_10_1109_TCOMM_2023_3263874
crossref_primary_10_1109_TCOMM_2023_3292472
crossref_primary_10_3390_electronics13193945
crossref_primary_10_1109_LWC_2021_3106039
crossref_primary_10_1109_JSAC_2022_3191344
crossref_primary_10_1109_TSP_2023_3329964
crossref_primary_10_1109_ACCESS_2021_3069707
crossref_primary_10_1109_LWC_2023_3340172
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1109_TMC_2024_3502574
crossref_primary_10_1109_TCCN_2024_3384500
crossref_primary_10_1109_TVT_2023_3269381
crossref_primary_10_1049_cmu2_12176
crossref_primary_10_1109_TVT_2021_3128693
crossref_primary_10_1109_TVLSI_2024_3392688
crossref_primary_10_1109_OJVT_2023_3334822
crossref_primary_10_1109_JETCAS_2020_3000103
crossref_primary_10_1016_j_aeue_2025_155815
crossref_primary_10_1109_TCOMM_2024_3516504
crossref_primary_10_1007_s11276_020_02412_1
crossref_primary_10_1109_TCOMM_2020_3007622
crossref_primary_10_1109_TSP_2023_3322852
crossref_primary_10_3390_telecom6030058
crossref_primary_10_1109_ACCESS_2020_3033989
crossref_primary_10_1109_ACCESS_2021_3065923
crossref_primary_10_1109_TWC_2023_3329521
crossref_primary_10_1109_ACCESS_2021_3087136
crossref_primary_10_1109_JSYST_2022_3191192
crossref_primary_10_1109_TVT_2022_3151246
crossref_primary_10_1109_TVT_2024_3391614
crossref_primary_10_1109_LCOMM_2020_3039528
crossref_primary_10_1109_LWC_2022_3147250
Cites_doi 10.1007/978-3-7908-2604-3_16
10.1038/nature16961
10.1109/TSP.2018.2868322
10.1109/JSTSP.2017.2788405
10.1109/TSP.2004.834267
10.1109/TIT.2014.2354403
10.1109/CVPR.2015.7298594
10.1109/TIT.2008.917634
10.1109/TIT.2002.800499
10.1109/JSAC.2005.862402
10.1109/CC.2017.8233654
10.1109/26.837052
10.1109/GlobalSIP.2016.7905837
10.1109/CAMSAP.2017.8313200
10.1109/ISIT.2015.7282651
10.1109/LWC.2017.2757490
10.1109/ICASSP.2017.7952561
10.1109/CISS.2017.7926071
10.1109/ALLERTON.2016.7852251
10.1109/JSTSP.2017.2784180
10.1109/MSP.2012.2205597
10.1109/MSP.2010.936019
10.1109/SPAWC.2017.8227772
10.1109/CVPR.2016.90
10.1109/TIT.2011.2143830
10.1109/TWC.2017.2654344
10.1038/nature14539
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2019.2899805
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2564
ExternalDocumentID 10_1109_TSP_2019_2899805
8642915
Genre orig-research
GrantInformation_xml – fundername: Iowa Science Foundation
  grantid: 1339/15
  funderid: 10.13039/100012579
– fundername: Heron Consortium
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-7524a5e3f56b54c460709589090947ea6b6927bba6eb4e7adceb7a700a45b7ba3
IEDL.DBID RIE
ISICitedReferencesCount 356
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464941100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:14:35 EDT 2025
Sat Nov 29 04:10:48 EST 2025
Tue Nov 18 22:27:42 EST 2025
Wed Aug 27 02:47:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7524a5e3f56b54c460709589090947ea6b6927bba6eb4e7adceb7a700a45b7ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2296-6952
0000-0003-4284-102X
PQID 2210042388
PQPubID 85478
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TSP_2019_2899805
proquest_journals_2210042388
ieee_primary_8642915
crossref_primary_10_1109_TSP_2019_2899805
PublicationCentury 2000
PublicationDate 2019-05-15
PublicationDateYYYYMMDD 2019-05-15
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
ref37
hershey (ref14) 2014
ref31
ref30
ref11
verdu (ref1) 1998
gregor (ref15) 0
ref2
ref39
ref17
ref38
ref16
ref19
farsad (ref22) 2017
abadi (ref36) 2016
o'shea (ref27) 2017
o'shea (ref25) 0
silver (ref13) 2016; 529
ref24
ref23
ref26
rumelhart (ref33) 1988; 5
kingma (ref35) 2014
graves (ref10) 0
ref21
glorot (ref32) 0; 9
ref28
lecun (ref8) 2015; 521
nachmani (ref18) 2017
ref29
o'shea (ref20) 2017
ref7
ref9
ref4
ref3
ref6
ref5
ref40
bailey (ref41) 1995; 156
References_xml – ident: ref34
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 529
  start-page: 484
  year: 2016
  ident: ref13
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref23
  doi: 10.1109/TSP.2018.2868322
– ident: ref19
  doi: 10.1109/JSTSP.2017.2788405
– year: 2016
  ident: ref36
  article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems
– ident: ref37
  doi: 10.1109/TSP.2004.834267
– ident: ref40
  doi: 10.1109/TIT.2014.2354403
– ident: ref12
  doi: 10.1109/CVPR.2015.7298594
– year: 1998
  ident: ref1
  publication-title: Multiuser Detection
– ident: ref7
  doi: 10.1109/TIT.2008.917634
– year: 2017
  ident: ref27
  article-title: Deep learning based MIMO communications
– year: 2014
  ident: ref35
  article-title: Adam: A method for stochastic optimization
– ident: ref2
  doi: 10.1109/TIT.2002.800499
– ident: ref3
  doi: 10.1109/JSAC.2005.862402
– ident: ref29
  doi: 10.1109/CC.2017.8233654
– ident: ref39
  doi: 10.1109/26.837052
– year: 2014
  ident: ref14
  article-title: Deep unfolding: Model-based inspiration of novel deep architectures
– ident: ref16
  doi: 10.1109/GlobalSIP.2016.7905837
– ident: ref30
  doi: 10.1109/CAMSAP.2017.8313200
– ident: ref5
  doi: 10.1109/ISIT.2015.7282651
– ident: ref24
  doi: 10.1109/LWC.2017.2757490
– volume: 156
  year: 1995
  ident: ref41
  publication-title: The NAS Parallel Benchmarks 2 0
– year: 2017
  ident: ref22
  article-title: Detection algorithms for communication systems using deep learning
– ident: ref31
  doi: 10.1109/ICASSP.2017.7952561
– year: 2017
  ident: ref18
  article-title: RNN decoding of linear block codes
– ident: ref21
  doi: 10.1109/CISS.2017.7926071
– volume: 9
  start-page: 249
  year: 0
  ident: ref32
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref17
  doi: 10.1109/ALLERTON.2016.7852251
– ident: ref26
  doi: 10.1109/JSTSP.2017.2784180
– volume: 5
  year: 1988
  ident: ref33
  article-title: Learning representations by back-propagating errors
  publication-title: Cogn Model
– year: 2017
  ident: ref20
  article-title: An introduction to machine learning communications systems
– ident: ref9
  doi: 10.1109/MSP.2012.2205597
– start-page: 1764
  year: 0
  ident: ref10
  article-title: Towards end-to-end speech recognition with recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref6
  doi: 10.1109/MSP.2010.936019
– ident: ref28
  doi: 10.1109/SPAWC.2017.8227772
– ident: ref11
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 0
  ident: ref25
  article-title: Learning approximate neural estimators for wireless channel state information
  publication-title: Proc IEEE 27th Int Workshop Machine Learn Signal Process
– ident: ref38
  doi: 10.1109/TIT.2011.2143830
– ident: ref4
  doi: 10.1109/TWC.2017.2654344
– start-page: 399
  year: 0
  ident: ref15
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Mach Learn
– volume: 521
  start-page: 436
  year: 2015
  ident: ref8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0014496
Score 2.6890635
Snippet In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2554
SubjectTerms Algorithms
Artificial neural networks
Complexity theory
Deep learning
Detectors
MIMO communication
MIMO detection
Multilayers
Neural networks
Signal processing algorithms
Title Learning to Detect
URI https://ieeexplore.ieee.org/document/8642915
https://www.proquest.com/docview/2210042388
Volume 67
WOSCitedRecordID wos000464941100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHtVaxWiUHL4Jp0-z7KGrxIKVghd7C7mYigrTSpv5-d7dpKCiC5LKH3U34spOZyTw-gGumpCnkgMRMI4mdSa1jpwRp7CwTpXNDikIH1pJnMRrJ6VSNG3Bb18IgYkg-w54fhlh-Prcr_6usL52xrHxF-Y4QfF2rVUcMKA1cXM5ccPeVYroJSSaqP3kZ-xwu1QvOhSeq21JBgVPlx4c4aJfh4f-e6wgOKisyulu_9hY0cHYM-1u9BdvQqjqnvkXlPHpAHys4gdfh4-T-Ka4IEGLr9itjwVKqGZKCccOopdzJp2JSJe6iAjU3XKXCGM3RUBQ6t2iEFkmiKTPCaHIKzdl8hmcQCYI5zwlFzq3vEagTlnO0TiSdBygL1YH-BpPMVt3BPUnFRxa8hERlDsXMo5hVKHbgpl7xue6M8cfctketnlcB1oHuBvasEp1llqaDkKwj5fnvqy5gz-_tQ_gD1oVmuVjhJezar_J9ubgKp-IbRnCxdw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDWqtYnz14EUybJvs8iloq1lKwQm9hdzMRQVppU3-_u9s0FBRBcslhH-HLTmYm8_gArqgUOhOdOKAK48Ca1CqwSpAE1jKRKtVxlinPWtLng4EYj-WwAjdlLQwi-uQzbLlbH8tPp2bhfpW1hTWWpaso36CEROGyWquMGRDi2biswWB3Fny8CkqGsj16GbosLtny7oWjqltTQp5V5cen2OuX7t7_nmwfdgs7snm7fPE1qODkAHbWugvWoVb0Tn1r5tPmPbpowSG8dh9Gd72goEAIjF0vDziNiKIYZ5RpSgxhVkIlFTK0F-GomGYy4lorhpogV6lBzRUPQ0Wo5lrFR1CdTCd4DE0eY8rSmCBjxnUJVCFNGRorlNYHFJlsQHuFSWKK_uCOpuIj8X5CKBOLYuJQTAoUG3Bdzvhc9sb4Y2zdoVaOKwBrwNkK9qQQnnkSRR2friPEye-zLmGrN3ruJ_3HwdMpbLt9XEC_Q8-gms8WeA6b5it_n88u_An5BrQPtL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Detect&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Neev+Samuel&rft.au=Diskin%2C+Tzvi&rft.au=Wiesel%2C+Ami&rft.date=2019-05-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=10&rft.spage=2554&rft_id=info:doi/10.1109%2FTSP.2019.2899805&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon