Learning to Detect
In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obt...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 67; číslo 10; s. 2554 - 2564 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
15.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the proposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions. |
|---|---|
| AbstractList | In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully connected multi-layer network, and a detection network (DetNet), which is specifically designed for the task. The structure of DetNet is obtained by unfolding the iterations of a projected gradient descent algorithm into a network. We compare the accuracy and runtime complexity of the proposed approaches and achieve state-of-the-art performance while maintaining low computational requirements. Furthermore, we manage to train a single network to detect over an entire distribution of channels. Finally, we consider detection with soft outputs and show that the networks can easily be modified to produce soft decisions. |
| Author | Samuel, Neev Diskin, Tzvi Wiesel, Ami |
| Author_xml | – sequence: 1 givenname: Neev surname: Samuel fullname: Samuel, Neev email: neev.samuel@mail.huji.ac.il organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel – sequence: 2 givenname: Tzvi surname: Diskin fullname: Diskin, Tzvi email: zvidiskin@gmail.com organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel – sequence: 3 givenname: Ami surname: Wiesel fullname: Wiesel, Ami email: amiw@cs.huji.ac.il organization: Sch. of Comput. Sci. & Eng., Hebrew Univ. of Jerusalem, Jerusalem, Israel |
| BookMark | eNp9jz1LA0EQhheJYBJtrASbgPWds3v7WUqMH3CgYAS7ZfeckwvxLu5uCv-9GxIsLGSKd4r3meGZkFE_9EjIBYWSUjDXy5fnkgE1JdPGaBBHZEwNpwVwJUd5B1EVQqu3EzKJcQVAOTdyTM5rdKHv-o9ZGma3mLBJp-S4deuIZ4eckte7xXL-UNRP94_zm7pomKGpUIJxJ7BqhfSCN1yCAiO0gTxcoZNeGqa8dxI9R-XeG_TKKQDHhVfeVVNytb-7CcPXFmOyq2Eb-vzSMkYBOKu0zi25bzVhiDFga5suudQNfQquW1sKdudvs7_d-duDfwbhD7gJ3acL3_8hl3ukQ8TfupY8C4vqB8G_ZRI |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3121724 crossref_primary_10_1109_JSAC_2020_3036954 crossref_primary_10_1109_TVT_2024_3430353 crossref_primary_10_1109_ACCESS_2021_3073325 crossref_primary_10_1109_TWC_2020_2976004 crossref_primary_10_1016_j_sigpro_2024_109554 crossref_primary_10_1016_j_procs_2021_04_091 crossref_primary_10_3390_s25030669 crossref_primary_10_1109_TCCN_2022_3151935 crossref_primary_10_1109_TWC_2020_3032663 crossref_primary_10_1007_s11265_020_01631_1 crossref_primary_10_1109_TWC_2023_3261782 crossref_primary_10_1049_ell2_13155 crossref_primary_10_1109_TCOMM_2022_3186404 crossref_primary_10_1007_s11276_024_03788_0 crossref_primary_10_3390_signals1010005 crossref_primary_10_1088_2040_8986_ad08dc crossref_primary_10_3390_electronics14020335 crossref_primary_10_1109_TSUSC_2023_3324339 crossref_primary_10_1109_TIE_2023_3243301 crossref_primary_10_1109_TCOMM_2023_3237241 crossref_primary_10_1007_s11235_024_01231_5 crossref_primary_10_1109_LCOMM_2024_3451655 crossref_primary_10_1016_j_sigpro_2024_109543 crossref_primary_10_1109_TSP_2021_3076900 crossref_primary_10_1109_TVT_2023_3307449 crossref_primary_10_1109_TSP_2024_3359083 crossref_primary_10_1007_s11276_023_03545_9 crossref_primary_10_1109_TWC_2021_3054520 crossref_primary_10_1364_JOCN_492770 crossref_primary_10_1109_TWC_2020_2977340 crossref_primary_10_1109_LCOMM_2020_3011560 crossref_primary_10_1109_TCOMM_2023_3321735 crossref_primary_10_1016_j_dsp_2024_104627 crossref_primary_10_1109_TSP_2022_3180552 crossref_primary_10_1109_MWC_001_1900473 crossref_primary_10_1155_2022_8992478 crossref_primary_10_1002_inst_12416 crossref_primary_10_1109_TSP_2023_3310279 crossref_primary_10_1109_JPROC_2019_2957798 crossref_primary_10_1109_TCCN_2022_3168725 crossref_primary_10_1109_LWC_2024_3415175 crossref_primary_10_1109_TWC_2024_3514931 crossref_primary_10_1109_TCOMM_2022_3141399 crossref_primary_10_1109_ACCESS_2020_2978253 crossref_primary_10_1109_COMST_2021_3135542 crossref_primary_10_1109_LWC_2021_3111075 crossref_primary_10_1186_s13634_022_00885_0 crossref_primary_10_1109_TWC_2025_3541144 crossref_primary_10_1109_ACCESS_2023_3311821 crossref_primary_10_1109_ACCESS_2019_2937982 crossref_primary_10_1016_j_rineng_2025_105409 crossref_primary_10_1109_TCOMM_2023_3292468 crossref_primary_10_1109_TCOMM_2024_3454026 crossref_primary_10_1109_JIOT_2024_3368516 crossref_primary_10_1109_JSAC_2022_3180794 crossref_primary_10_1051_matecconf_202133604007 crossref_primary_10_1109_TSP_2022_3205478 crossref_primary_10_1007_s11425_023_2293_3 crossref_primary_10_1109_TCOMM_2023_3247733 crossref_primary_10_1016_j_indcrop_2023_116455 crossref_primary_10_1109_TSP_2020_3035832 crossref_primary_10_1186_s13677_020_00168_9 crossref_primary_10_1109_JSAC_2024_3443759 crossref_primary_10_1109_TWC_2019_2924220 crossref_primary_10_1109_TVT_2025_3534820 crossref_primary_10_1109_ACCESS_2020_3043004 crossref_primary_10_1109_TWC_2023_3292124 crossref_primary_10_1109_TCOMM_2022_3157314 crossref_primary_10_1109_TCOMM_2022_3218630 crossref_primary_10_1109_TWC_2023_3235059 crossref_primary_10_1109_JSAC_2025_3531558 crossref_primary_10_1049_cmu2_12424 crossref_primary_10_1109_TWC_2021_3100133 crossref_primary_10_1109_TWC_2024_3516738 crossref_primary_10_1049_cmu2_12669 crossref_primary_10_1109_TVT_2024_3360511 crossref_primary_10_1109_TWC_2022_3230662 crossref_primary_10_1109_TWC_2023_3272525 crossref_primary_10_1109_JPHOT_2019_2938231 crossref_primary_10_1016_j_phycom_2021_101343 crossref_primary_10_1109_TWC_2024_3422794 crossref_primary_10_1109_JPROC_2023_3247480 crossref_primary_10_1007_s11265_022_01827_7 crossref_primary_10_1109_TWC_2022_3157467 crossref_primary_10_1109_TMI_2019_2941271 crossref_primary_10_1109_TWC_2020_2981919 crossref_primary_10_1109_TVT_2024_3445912 crossref_primary_10_1109_TWC_2023_3241841 crossref_primary_10_1109_TWC_2023_3268945 crossref_primary_10_1109_ACCESS_2022_3206814 crossref_primary_10_1109_JSAC_2021_3087224 crossref_primary_10_1109_TWC_2022_3164203 crossref_primary_10_1109_TWC_2022_3181219 crossref_primary_10_1109_TVT_2022_3201961 crossref_primary_10_1109_TCOMM_2023_3294957 crossref_primary_10_1109_TWC_2020_3026471 crossref_primary_10_1016_j_aeue_2019_152964 crossref_primary_10_1109_TSP_2022_3143372 crossref_primary_10_1142_S0129065725500534 crossref_primary_10_1109_TWC_2020_3033334 crossref_primary_10_1109_TSP_2023_3284373 crossref_primary_10_1109_TWC_2021_3076527 crossref_primary_10_1109_LCOMM_2019_2950201 crossref_primary_10_1109_TCOMM_2022_3219141 crossref_primary_10_1109_TSP_2021_3117503 crossref_primary_10_1109_MWC_003_21003437 crossref_primary_10_1016_j_phycom_2024_102438 crossref_primary_10_1109_TCOMM_2023_3337272 crossref_primary_10_1109_COMST_2023_3300664 crossref_primary_10_1109_TSP_2023_3238275 crossref_primary_10_1016_j_aeue_2022_154350 crossref_primary_10_1109_ACCESS_2019_2928049 crossref_primary_10_1109_ACCESS_2020_2979156 crossref_primary_10_1109_TCOMM_2023_3299974 crossref_primary_10_3390_su16167039 crossref_primary_10_1109_ACCESS_2019_2927997 crossref_primary_10_1109_LCOMM_2020_2989672 crossref_primary_10_1109_TWC_2020_2996144 crossref_primary_10_1109_TCCN_2023_3235763 crossref_primary_10_1109_TWC_2025_3561242 crossref_primary_10_1109_ACCESS_2020_3006265 crossref_primary_10_1109_TCOMM_2023_3348839 crossref_primary_10_3390_app10134622 crossref_primary_10_1109_TVT_2022_3230143 crossref_primary_10_1109_LWC_2023_3234239 crossref_primary_10_1109_ACCESS_2021_3104660 crossref_primary_10_1109_ACCESS_2020_3044097 crossref_primary_10_1109_TWC_2020_3030882 crossref_primary_10_1109_TCOMM_2021_3114682 crossref_primary_10_1109_TWC_2024_3509713 crossref_primary_10_1109_LCOMM_2022_3197974 crossref_primary_10_1109_TWC_2021_3055202 crossref_primary_10_1109_ACCESS_2021_3125002 crossref_primary_10_1109_TSP_2023_3263255 crossref_primary_10_1109_TWC_2023_3336911 crossref_primary_10_1007_s00340_020_07571_9 crossref_primary_10_1016_j_phycom_2025_102637 crossref_primary_10_1109_ACCESS_2020_2985083 crossref_primary_10_1109_TWC_2022_3170510 crossref_primary_10_1109_JSAC_2021_3126087 crossref_primary_10_1109_TCCN_2020_2985371 crossref_primary_10_1109_ACCESS_2023_3310238 crossref_primary_10_1109_LWC_2023_3348933 crossref_primary_10_1109_TR_2022_3148114 crossref_primary_10_1109_TWC_2023_3330816 crossref_primary_10_1109_TVT_2022_3166399 crossref_primary_10_1109_TVT_2022_3226799 crossref_primary_10_1109_LCOMM_2020_3018260 crossref_primary_10_1109_MWC_013_2100652 crossref_primary_10_1016_j_aeue_2023_154712 crossref_primary_10_1109_JPROC_2024_3437730 crossref_primary_10_1109_TWC_2021_3123220 crossref_primary_10_1109_ACCESS_2022_3221800 crossref_primary_10_1109_TVT_2024_3392856 crossref_primary_10_1109_TWC_2022_3193885 crossref_primary_10_1109_ACCESS_2020_3035961 crossref_primary_10_1109_OJVT_2025_3574934 crossref_primary_10_1109_TSP_2023_3239170 crossref_primary_10_1109_ACCESS_2020_2987375 crossref_primary_10_1109_TCOMM_2019_2960361 crossref_primary_10_3390_rs12172729 crossref_primary_10_1016_j_dsp_2023_104027 crossref_primary_10_1109_TWC_2021_3082844 crossref_primary_10_1109_TWC_2023_3271521 crossref_primary_10_1016_j_phycom_2023_102189 crossref_primary_10_1109_JSAC_2021_3126080 crossref_primary_10_1109_LSP_2022_3179958 crossref_primary_10_1109_LCOMM_2020_3045665 crossref_primary_10_1109_TVT_2023_3325367 crossref_primary_10_1109_LWC_2020_3007198 crossref_primary_10_1016_j_compeleceng_2024_109608 crossref_primary_10_1109_TWC_2021_3068302 crossref_primary_10_1109_JIOT_2023_3274209 crossref_primary_10_1109_LCOMM_2022_3206414 crossref_primary_10_1109_TVT_2023_3241440 crossref_primary_10_1109_TCOMM_2021_3058999 crossref_primary_10_1109_TWC_2021_3051317 crossref_primary_10_1109_MSP_2023_3261505 crossref_primary_10_1038_s44172_023_00108_w crossref_primary_10_1109_TSP_2022_3229944 crossref_primary_10_1109_TWC_2022_3155945 crossref_primary_10_1109_TCOMM_2024_3394039 crossref_primary_10_1109_TVT_2021_3099640 crossref_primary_10_1109_TWC_2022_3227636 crossref_primary_10_1109_TCOMM_2022_3209888 crossref_primary_10_1109_TCCN_2023_3279260 crossref_primary_10_1109_TWC_2022_3190435 crossref_primary_10_33769_aupse_1140193 crossref_primary_10_1109_TAES_2024_3443020 crossref_primary_10_1109_TVT_2019_2922369 crossref_primary_10_1109_ACCESS_2024_3494752 crossref_primary_10_1109_JSAC_2021_3126064 crossref_primary_10_1109_TSP_2020_3048232 crossref_primary_10_1109_TCOMM_2023_3263874 crossref_primary_10_1109_TCOMM_2023_3292472 crossref_primary_10_3390_electronics13193945 crossref_primary_10_1109_LWC_2021_3106039 crossref_primary_10_1109_JSAC_2022_3191344 crossref_primary_10_1109_TSP_2023_3329964 crossref_primary_10_1109_ACCESS_2021_3069707 crossref_primary_10_1109_LWC_2023_3340172 crossref_primary_10_1109_JLT_2022_3148270 crossref_primary_10_1109_TMC_2024_3502574 crossref_primary_10_1109_TCCN_2024_3384500 crossref_primary_10_1109_TVT_2023_3269381 crossref_primary_10_1049_cmu2_12176 crossref_primary_10_1109_TVT_2021_3128693 crossref_primary_10_1109_TVLSI_2024_3392688 crossref_primary_10_1109_OJVT_2023_3334822 crossref_primary_10_1109_JETCAS_2020_3000103 crossref_primary_10_1016_j_aeue_2025_155815 crossref_primary_10_1109_TCOMM_2024_3516504 crossref_primary_10_1007_s11276_020_02412_1 crossref_primary_10_1109_TCOMM_2020_3007622 crossref_primary_10_1109_TSP_2023_3322852 crossref_primary_10_3390_telecom6030058 crossref_primary_10_1109_ACCESS_2020_3033989 crossref_primary_10_1109_ACCESS_2021_3065923 crossref_primary_10_1109_TWC_2023_3329521 crossref_primary_10_1109_ACCESS_2021_3087136 crossref_primary_10_1109_JSYST_2022_3191192 crossref_primary_10_1109_TVT_2022_3151246 crossref_primary_10_1109_TVT_2024_3391614 crossref_primary_10_1109_LCOMM_2020_3039528 crossref_primary_10_1109_LWC_2022_3147250 |
| Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1038/nature16961 10.1109/TSP.2018.2868322 10.1109/JSTSP.2017.2788405 10.1109/TSP.2004.834267 10.1109/TIT.2014.2354403 10.1109/CVPR.2015.7298594 10.1109/TIT.2008.917634 10.1109/TIT.2002.800499 10.1109/JSAC.2005.862402 10.1109/CC.2017.8233654 10.1109/26.837052 10.1109/GlobalSIP.2016.7905837 10.1109/CAMSAP.2017.8313200 10.1109/ISIT.2015.7282651 10.1109/LWC.2017.2757490 10.1109/ICASSP.2017.7952561 10.1109/CISS.2017.7926071 10.1109/ALLERTON.2016.7852251 10.1109/JSTSP.2017.2784180 10.1109/MSP.2012.2205597 10.1109/MSP.2010.936019 10.1109/SPAWC.2017.8227772 10.1109/CVPR.2016.90 10.1109/TIT.2011.2143830 10.1109/TWC.2017.2654344 10.1038/nature14539 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2019.2899805 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 2564 |
| ExternalDocumentID | 10_1109_TSP_2019_2899805 8642915 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Iowa Science Foundation grantid: 1339/15 funderid: 10.13039/100012579 – fundername: Heron Consortium |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D RIG |
| ID | FETCH-LOGICAL-c291t-7524a5e3f56b54c460709589090947ea6b6927bba6eb4e7adceb7a700a45b7ba3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 356 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464941100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:14:35 EDT 2025 Sat Nov 29 04:10:48 EST 2025 Tue Nov 18 22:27:42 EST 2025 Wed Aug 27 02:47:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-7524a5e3f56b54c460709589090947ea6b6927bba6eb4e7adceb7a700a45b7ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2296-6952 0000-0003-4284-102X |
| PQID | 2210042388 |
| PQPubID | 85478 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2019_2899805 proquest_journals_2210042388 ieee_primary_8642915 crossref_primary_10_1109_TSP_2019_2899805 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-15 |
| PublicationDateYYYYMMDD | 2019-05-15 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref34 ref12 ref37 hershey (ref14) 2014 ref31 ref30 ref11 verdu (ref1) 1998 gregor (ref15) 0 ref2 ref39 ref17 ref38 ref16 ref19 farsad (ref22) 2017 abadi (ref36) 2016 o'shea (ref27) 2017 o'shea (ref25) 0 silver (ref13) 2016; 529 ref24 ref23 ref26 rumelhart (ref33) 1988; 5 kingma (ref35) 2014 graves (ref10) 0 ref21 glorot (ref32) 0; 9 ref28 lecun (ref8) 2015; 521 nachmani (ref18) 2017 ref29 o'shea (ref20) 2017 ref7 ref9 ref4 ref3 ref6 ref5 ref40 bailey (ref41) 1995; 156 |
| References_xml | – ident: ref34 doi: 10.1007/978-3-7908-2604-3_16 – volume: 529 start-page: 484 year: 2016 ident: ref13 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – ident: ref23 doi: 10.1109/TSP.2018.2868322 – ident: ref19 doi: 10.1109/JSTSP.2017.2788405 – year: 2016 ident: ref36 article-title: Tensorflow: Large-scale machine learning on heterogeneous distributed systems – ident: ref37 doi: 10.1109/TSP.2004.834267 – ident: ref40 doi: 10.1109/TIT.2014.2354403 – ident: ref12 doi: 10.1109/CVPR.2015.7298594 – year: 1998 ident: ref1 publication-title: Multiuser Detection – ident: ref7 doi: 10.1109/TIT.2008.917634 – year: 2017 ident: ref27 article-title: Deep learning based MIMO communications – year: 2014 ident: ref35 article-title: Adam: A method for stochastic optimization – ident: ref2 doi: 10.1109/TIT.2002.800499 – ident: ref3 doi: 10.1109/JSAC.2005.862402 – ident: ref29 doi: 10.1109/CC.2017.8233654 – ident: ref39 doi: 10.1109/26.837052 – year: 2014 ident: ref14 article-title: Deep unfolding: Model-based inspiration of novel deep architectures – ident: ref16 doi: 10.1109/GlobalSIP.2016.7905837 – ident: ref30 doi: 10.1109/CAMSAP.2017.8313200 – ident: ref5 doi: 10.1109/ISIT.2015.7282651 – ident: ref24 doi: 10.1109/LWC.2017.2757490 – volume: 156 year: 1995 ident: ref41 publication-title: The NAS Parallel Benchmarks 2 0 – year: 2017 ident: ref22 article-title: Detection algorithms for communication systems using deep learning – ident: ref31 doi: 10.1109/ICASSP.2017.7952561 – year: 2017 ident: ref18 article-title: RNN decoding of linear block codes – ident: ref21 doi: 10.1109/CISS.2017.7926071 – volume: 9 start-page: 249 year: 0 ident: ref32 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref17 doi: 10.1109/ALLERTON.2016.7852251 – ident: ref26 doi: 10.1109/JSTSP.2017.2784180 – volume: 5 year: 1988 ident: ref33 article-title: Learning representations by back-propagating errors publication-title: Cogn Model – year: 2017 ident: ref20 article-title: An introduction to machine learning communications systems – ident: ref9 doi: 10.1109/MSP.2012.2205597 – start-page: 1764 year: 0 ident: ref10 article-title: Towards end-to-end speech recognition with recurrent neural networks publication-title: Proc Int Conf Mach Learn – ident: ref6 doi: 10.1109/MSP.2010.936019 – ident: ref28 doi: 10.1109/SPAWC.2017.8227772 – ident: ref11 doi: 10.1109/CVPR.2016.90 – start-page: 1 year: 0 ident: ref25 article-title: Learning approximate neural estimators for wireless channel state information publication-title: Proc IEEE 27th Int Workshop Machine Learn Signal Process – ident: ref38 doi: 10.1109/TIT.2011.2143830 – ident: ref4 doi: 10.1109/TWC.2017.2654344 – start-page: 399 year: 0 ident: ref15 article-title: Learning fast approximations of sparse coding publication-title: Proc 27th Int Conf Mach Learn – volume: 521 start-page: 436 year: 2015 ident: ref8 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 |
| SSID | ssj0014496 |
| Score | 2.6890635 |
| Snippet | In this paper, we consider multiple-input-multiple-output detection using deep neural networks. We introduce two different deep architectures: a standard fully... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2554 |
| SubjectTerms | Algorithms Artificial neural networks Complexity theory Deep learning Detectors MIMO communication MIMO detection Multilayers Neural networks Signal processing algorithms |
| Title | Learning to Detect |
| URI | https://ieeexplore.ieee.org/document/8642915 https://www.proquest.com/docview/2210042388 |
| Volume | 67 |
| WOSCitedRecordID | wos000464941100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHtVaxWiUHL4Jp0-z7KGrxIKVghd7C7mYigrTSpv5-d7dpKCiC5LKH3U34spOZyTw-gGumpCnkgMRMI4mdSa1jpwRp7CwTpXNDikIH1pJnMRrJ6VSNG3Bb18IgYkg-w54fhlh-Prcr_6usL52xrHxF-Y4QfF2rVUcMKA1cXM5ccPeVYroJSSaqP3kZ-xwu1QvOhSeq21JBgVPlx4c4aJfh4f-e6wgOKisyulu_9hY0cHYM-1u9BdvQqjqnvkXlPHpAHys4gdfh4-T-Ka4IEGLr9itjwVKqGZKCccOopdzJp2JSJe6iAjU3XKXCGM3RUBQ6t2iEFkmiKTPCaHIKzdl8hmcQCYI5zwlFzq3vEagTlnO0TiSdBygL1YH-BpPMVt3BPUnFRxa8hERlDsXMo5hVKHbgpl7xue6M8cfctketnlcB1oHuBvasEp1llqaDkKwj5fnvqy5gz-_tQ_gD1oVmuVjhJezar_J9ubgKp-IbRnCxdw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5KFdSDWqtYnz14EUybJvs8iloq1lKwQm9hdzMRQVppU3-_u9s0FBRBcslhH-HLTmYm8_gArqgUOhOdOKAK48Ca1CqwSpAE1jKRKtVxlinPWtLng4EYj-WwAjdlLQwi-uQzbLlbH8tPp2bhfpW1hTWWpaso36CEROGyWquMGRDi2biswWB3Fny8CkqGsj16GbosLtny7oWjqltTQp5V5cen2OuX7t7_nmwfdgs7snm7fPE1qODkAHbWugvWoVb0Tn1r5tPmPbpowSG8dh9Gd72goEAIjF0vDziNiKIYZ5RpSgxhVkIlFTK0F-GomGYy4lorhpogV6lBzRUPQ0Wo5lrFR1CdTCd4DE0eY8rSmCBjxnUJVCFNGRorlNYHFJlsQHuFSWKK_uCOpuIj8X5CKBOLYuJQTAoUG3Bdzvhc9sb4Y2zdoVaOKwBrwNkK9qQQnnkSRR2friPEye-zLmGrN3ruJ_3HwdMpbLt9XEC_Q8-gms8WeA6b5it_n88u_An5BrQPtL4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Detect&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Neev+Samuel&rft.au=Diskin%2C+Tzvi&rft.au=Wiesel%2C+Ami&rft.date=2019-05-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=67&rft.issue=10&rft.spage=2554&rft_id=info:doi/10.1109%2FTSP.2019.2899805&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |