DeepSLAM: A Robust Monocular SLAM System With Unsupervised Deep Learning

In this article, we propose DeepSLAM, a novel unsupervised deep learning based visual simultaneous localization and mapping (SLAM) system. The DeepSLAM training is fully unsupervised since it only requires stereo imagery instead of annotating ground-truth poses. Its testing takes a monocular image s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) Jg. 68; H. 4; S. 3577 - 3587
Hauptverfasser: Li, Ruihao, Wang, Sen, Gu, Dongbing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0278-0046, 1557-9948
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we propose DeepSLAM, a novel unsupervised deep learning based visual simultaneous localization and mapping (SLAM) system. The DeepSLAM training is fully unsupervised since it only requires stereo imagery instead of annotating ground-truth poses. Its testing takes a monocular image sequence as the input. Therefore, it is a monocular SLAM paradigm. DeepSLAM consists of several essential components, including Mapping-Net, Tracking-Net, Loop-Net, and a graph optimization unit. Specifically, the Mapping-Net is an encoder and decoder architecture for describing the 3-D structure of environment, whereas the Tracking-Net is a recurrent convolutional neural network architecture for capturing the camera motion. The Loop-Net is a pretrained binary classifier for detecting loop closures. DeepSLAM can simultaneously generate pose estimate, depth map, and outlier rejection mask. In this article, we evaluate its performance on various datasets, and find that DeepSLAM achieves good performance in terms of pose estimation accuracy, and is robust in some challenging scenes.
AbstractList In this article, we propose DeepSLAM, a novel unsupervised deep learning based visual simultaneous localization and mapping (SLAM) system. The DeepSLAM training is fully unsupervised since it only requires stereo imagery instead of annotating ground-truth poses. Its testing takes a monocular image sequence as the input. Therefore, it is a monocular SLAM paradigm. DeepSLAM consists of several essential components, including Mapping-Net, Tracking-Net, Loop-Net, and a graph optimization unit. Specifically, the Mapping-Net is an encoder and decoder architecture for describing the 3-D structure of environment, whereas the Tracking-Net is a recurrent convolutional neural network architecture for capturing the camera motion. The Loop-Net is a pretrained binary classifier for detecting loop closures. DeepSLAM can simultaneously generate pose estimate, depth map, and outlier rejection mask. In this article, we evaluate its performance on various datasets, and find that DeepSLAM achieves good performance in terms of pose estimation accuracy, and is robust in some challenging scenes.
Author Li, Ruihao
Gu, Dongbing
Wang, Sen
Author_xml – sequence: 1
  givenname: Ruihao
  orcidid: 0000-0002-9839-1489
  surname: Li
  fullname: Li, Ruihao
  email: liruihao2008@gmail.com
  organization: Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing, China
– sequence: 2
  givenname: Sen
  orcidid: 0000-0003-1537-8834
  surname: Wang
  fullname: Wang, Sen
  email: s.wang@hw.ac.uk
  organization: Edinburgh Centre for Robotics, Heriot-Watt University, Edinburgh, U.K
– sequence: 3
  givenname: Dongbing
  orcidid: 0000-0002-0986-2921
  surname: Gu
  fullname: Gu, Dongbing
  email: dgu@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
BookMark eNp9kMFLwzAUxoNMcJveBS8Bz50vado03sacbtAhuA2PpU1ftGNra9IK--9t2fDgwdM7vO_3ffAbkUFZlUjILYMJY6AeNsv5hAOHCVcRBxVekCELAukpJaIBGQKXkQcgwisycm4HwETAgiFZPCHW63i6eqRT-lZlrWvoqior3e5TS_sHXR9dgwf6XjSfdFu6tkb7XTjMaY_SGFNbFuXHNbk06d7hzfmOyfZ5vpktvPj1ZTmbxp7mijWeDLphY5QOWZ5ynfvopxwwENoIrYxAE-UgZWZYJlSOOssyH1kWmYyj5hj6Y3J_6q1t9dWia5Jd1dqym0y4kBD6vpK8S4WnlLaVcxZNoosmbYqqbGxa7BMGSW8t6awlvbXkbK0D4Q9Y2-KQ2uN_yN0JKRDxN65ASCbB_wHDU3lD
CODEN ITIED6
CitedBy_id crossref_primary_10_3390_aerospace11090768
crossref_primary_10_3390_rs15041156
crossref_primary_10_1002_rob_22454
crossref_primary_10_1145_3580854
crossref_primary_10_3390_robotics11010024
crossref_primary_10_1109_TITS_2022_3153815
crossref_primary_10_1016_j_patcog_2024_110573
crossref_primary_10_1109_TITS_2024_3462596
crossref_primary_10_1088_1361_6501_adfe04
crossref_primary_10_1109_TETCI_2024_3360329
crossref_primary_10_1109_JSEN_2024_3355907
crossref_primary_10_3390_electronics13163332
crossref_primary_10_1109_TIE_2022_3203761
crossref_primary_10_3390_app14177767
crossref_primary_10_3390_s25051447
crossref_primary_10_1109_TITS_2023_3284228
crossref_primary_10_1109_ACCESS_2023_3249661
crossref_primary_10_1016_j_pnucene_2025_105821
crossref_primary_10_1109_ACCESS_2023_3251733
crossref_primary_10_1016_j_procs_2024_11_035
crossref_primary_10_3390_s25165029
crossref_primary_10_1109_TIM_2025_3602581
crossref_primary_10_1177_01423312251344676
crossref_primary_10_32604_cmes_2022_019430
crossref_primary_10_3390_rs14133010
crossref_primary_10_1016_j_engappai_2024_108466
crossref_primary_10_1007_s10791_025_09607_0
crossref_primary_10_1016_j_displa_2024_102806
crossref_primary_10_1109_TITS_2021_3127646
crossref_primary_10_1109_ACCESS_2022_3144845
crossref_primary_10_1080_19479832_2024_2382737
crossref_primary_10_1007_s10846_022_01582_8
crossref_primary_10_1007_s12559_022_10010_w
crossref_primary_10_1109_TVT_2024_3492388
crossref_primary_10_1088_1361_6501_ad9347
crossref_primary_10_1109_TIE_2022_3222696
crossref_primary_10_1109_TASE_2023_3330704
crossref_primary_10_1109_TVT_2023_3241634
crossref_primary_10_1109_TRO_2021_3120036
crossref_primary_10_1109_TCSVT_2025_3526645
crossref_primary_10_1016_j_robot_2025_105081
crossref_primary_10_1088_1361_6501_adcce2
crossref_primary_10_1109_ACCESS_2022_3199689
crossref_primary_10_1109_ACCESS_2023_3282637
crossref_primary_10_1109_ACCESS_2025_3589161
crossref_primary_10_1109_JSEN_2023_3324559
crossref_primary_10_1109_TIE_2022_3176304
crossref_primary_10_1109_LRA_2024_3440851
crossref_primary_10_1109_LRA_2024_3352357
crossref_primary_10_1109_TIE_2023_3327342
crossref_primary_10_3390_app14219748
crossref_primary_10_1088_1361_6501_ad824b
crossref_primary_10_1016_j_jestch_2025_101977
crossref_primary_10_1109_TIV_2022_3173662
crossref_primary_10_1111_mice_13353
crossref_primary_10_1109_TIE_2022_3219119
crossref_primary_10_3390_rs14236033
crossref_primary_10_3390_s23042113
crossref_primary_10_1186_s13634_021_00795_7
crossref_primary_10_1016_j_jmapro_2025_07_063
crossref_primary_10_1007_s10489_024_05776_5
crossref_primary_10_3390_rs15215141
crossref_primary_10_3390_s24185925
crossref_primary_10_1007_s40815_024_01930_w
crossref_primary_10_1016_j_neucom_2023_02_014
crossref_primary_10_3390_sym17040508
crossref_primary_10_1364_AO_465168
crossref_primary_10_3390_s21144735
crossref_primary_10_1007_s10922_024_09809_9
Cites_doi 10.1109/TASE.2017.2664920
10.1177/0278364917734298
10.1109/CVPR.2017.596
10.1109/TCI.2016.2644865
10.1177/0278364916679498
10.1109/ICCV.2017.75
10.1109/ICRA.2019.8793527
10.1109/ICRA.2017.7989236
10.1007/978-3-030-28619-4_38
10.1109/CVPR.2017.699
10.1007/978-3-319-10605-2_54
10.1109/ICME.2018.8486548
10.1109/TRO.2015.2463671
10.1109/CVPR.2017.700
10.1109/TPAMI.2007.1049
10.1007/978-3-319-46484-8_45
10.1007/978-3-319-46493-0_51
10.1109/ICCV.2015.336
10.1109/TIE.2018.2854557
10.1109/IVS.2011.5940405
10.1007/s10514-015-9516-2
10.1109/CVPR.2017.695
10.1109/ICRA.2018.8461251
10.1109/ICCV.2011.6126513
10.1109/TIP.2003.819861
10.1109/ICRA.2014.6906953
10.1007/978-3-319-70353-4_57
10.1109/LRA.2015.2505717
10.1109/TPAMI.2017.2658577
10.1109/IROS.2017.8202236
10.1109/TRO.2012.2197158
10.1109/ICInfA.2018.8812582
10.1109/TIE.2018.2826471
10.1109/CVPR.2012.6248074
10.1109/ICRA.2016.7487679
10.1109/ISMAR.2007.4538852
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2020.2982096
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 3587
ExternalDocumentID 10_1109_TIE_2020_2982096
9047170
Genre orig-research
GrantInformation_xml – fundername: DeepField Project
  grantid: 857339
– fundername: Engineering and Physical Sciences Research Council
  funderid: 10.13039/501100000266
– fundername: National Natural Science Foundation of China
  grantid: 61903377
  funderid: 10.13039/501100001809
– fundername: Artificial Intelligence Offshore Robotics for Certification of Assets
  grantid: EP/R026173/1
– fundername: EU H2020 Program under EUMarineRobots Project
  grantid: 731103
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-75145ff9c61da2cd3e3a20e54cf4c9f4ef8d077bf1b49decbbb3e1b8fb2ec2e63
IEDL.DBID RIE
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599525100077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:14:08 EDT 2025
Tue Nov 18 21:39:50 EST 2025
Sat Nov 29 01:31:47 EST 2025
Wed Aug 27 02:33:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-75145ff9c61da2cd3e3a20e54cf4c9f4ef8d077bf1b49decbbb3e1b8fb2ec2e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1537-8834
0000-0002-9839-1489
0000-0002-0986-2921
PQID 2470633972
PQPubID 85464
PageCount 11
ParticipantIDs proquest_journals_2470633972
crossref_primary_10_1109_TIE_2020_2982096
ieee_primary_9047170
crossref_citationtrail_10_1109_TIE_2020_2982096
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref14
mohanty (ref17) 2016
ref31
ref30
ref33
ref11
ref2
detone (ref23) 2017
ref1
szegedy (ref43) 0
ref38
ref16
ref19
ref18
simonyan (ref39) 2015
eigen (ref10) 0
ref24
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
kümmerle (ref36) 0
clark (ref15) 0
ref27
ref29
ref8
jaderberg (ref28) 0
ref7
ref9
vijayanarasimhan (ref32) 0
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/TASE.2017.2664920
– ident: ref19
  doi: 10.1177/0278364917734298
– ident: ref22
  doi: 10.1109/CVPR.2017.596
– ident: ref41
  doi: 10.1109/TCI.2016.2644865
– year: 0
  ident: ref32
  article-title: SfM-Net: Learning of structure and motion from video
  publication-title: arXiv 1704 07804
– ident: ref45
  doi: 10.1177/0278364916679498
– ident: ref13
  doi: 10.1109/ICCV.2017.75
– ident: ref27
  doi: 10.1109/ICRA.2019.8793527
– ident: ref18
  doi: 10.1109/ICRA.2017.7989236
– year: 2016
  ident: ref17
  article-title: DeepVO: A deep learning approach for monocular visual odometry
– ident: ref21
  doi: 10.1007/978-3-030-28619-4_38
– start-page: 2366
  year: 0
  ident: ref10
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 4278
  year: 0
  ident: ref43
  article-title: Inception-v4, Inception-ResNet and the impact of residual connections on learning
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref30
  doi: 10.1109/CVPR.2017.699
– start-page: 2017
  year: 0
  ident: ref28
  article-title: Spatial transformer networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref7
  doi: 10.1007/978-3-319-10605-2_54
– ident: ref26
  doi: 10.1109/ICME.2018.8486548
– ident: ref5
  doi: 10.1109/TRO.2015.2463671
– ident: ref31
  doi: 10.1109/CVPR.2017.700
– ident: ref1
  doi: 10.1109/TPAMI.2007.1049
– ident: ref11
  doi: 10.1007/978-3-319-46484-8_45
– ident: ref29
  doi: 10.1007/978-3-319-46493-0_51
– year: 2017
  ident: ref23
  article-title: Toward geometric deep SLAM
– ident: ref9
  doi: 10.1109/ICCV.2015.336
– ident: ref3
  doi: 10.1109/TIE.2018.2854557
– ident: ref42
  doi: 10.1109/IVS.2011.5940405
– ident: ref37
  doi: 10.1007/s10514-015-9516-2
– ident: ref24
  doi: 10.1109/CVPR.2017.695
– start-page: 1
  year: 2015
  ident: ref39
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Int Conf Learn Representations
– ident: ref33
  doi: 10.1109/ICRA.2018.8461251
– start-page: 6856
  year: 0
  ident: ref15
  article-title: VidLoc: 6-DoF video-clip relocalization
  publication-title: Proc Conf Comput Vis and Pattern Recog
– ident: ref6
  doi: 10.1109/ICCV.2011.6126513
– ident: ref40
  doi: 10.1109/TIP.2003.819861
– ident: ref35
  doi: 10.1109/ICRA.2014.6906953
– ident: ref20
  doi: 10.1007/978-3-319-70353-4_57
– ident: ref16
  doi: 10.1109/LRA.2015.2505717
– ident: ref8
  doi: 10.1109/TPAMI.2017.2658577
– ident: ref38
  doi: 10.1109/IROS.2017.8202236
– ident: ref34
  doi: 10.1109/TRO.2012.2197158
– ident: ref25
  doi: 10.1109/ICInfA.2018.8812582
– ident: ref4
  doi: 10.1109/TIE.2018.2826471
– ident: ref44
  doi: 10.1109/CVPR.2012.6248074
– ident: ref14
  doi: 10.1109/ICRA.2016.7487679
– ident: ref2
  doi: 10.1109/ISMAR.2007.4538852
– start-page: 3607
  year: 0
  ident: ref36
  article-title: g2o: A general framework for graph optimization
  publication-title: Proc IEEE Int Conf Robot Autom
SSID ssj0014515
Score 2.6462696
Snippet In this article, we propose DeepSLAM, a novel unsupervised deep learning based visual simultaneous localization and mapping (SLAM) system. The DeepSLAM...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3577
SubjectTerms Artificial neural networks
Coders
Computer architecture
Deep learning
Depth estimation
Imagery
machine learning
Optimization
Outliers (statistics)
Performance evaluation
Pose estimation
recurrent convolutional neural network (RCNN)
Robustness
Simultaneous localization and mapping
simultaneous localization and mapping (SLAM)
Three-dimensional displays
Tracking
Training
unsupervised deep learning (DL)
Visualization
Title DeepSLAM: A Robust Monocular SLAM System With Unsupervised Deep Learning
URI https://ieeexplore.ieee.org/document/9047170
https://www.proquest.com/docview/2470633972
Volume 68
WOSCitedRecordID wos000599525100077&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNCDX1OcTsnBi2C3Ns2axttQx4Q5RDfcrTTJqw5kG2vr32-SdmWgCN4KzYPye3lfzcvvIXQFHpNhoBLHdzlzqBdyRwhJHK5zeyZjro3ManrIRqNwOuXPNXRT3YUBANt8Bm3zaM_y1ULm5ldZh7valTJdoG8xFhR3taoTA9otphUQwxiri771kaTLO-PHB10IErdNuI53hp5_IwTZmSo_HLGNLv39_33XAdors0jcK9R-iGowP0K7G9yCDTS4B1i-DntPt7iHXxYiTzOsDXhh-06xeYELtnL8Nss-8GSe5kvjN1JQ2Ijiknn1_RhN-g_ju4FTjk1wJOFe5jCdA3WThMvAUzGRygc_Ji50qUyo5AmFJFQuYyLxBOUKpBDCB0-EiSAgCQT-CarPF3M4RRi0xQJw6mqtUQ5eDL6SLKZEMQ8Cwpqos0YykiWnuBlt8RnZ2sLlkcY-MthHJfZNdF1JLAs-jT_WNgzW1boS5iZqrZUVlQaXRoQynWzp5Iqc_S51jnaIaUexTTctVM9WOVygbfmVzdLVpd1L30PsxbM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6ICuqDtynOax58EaxL02xpfBtemDiH6MS9lSY5VUG2YTt_v0naDUERfCs0B8p3cm7NyXcAjjEUOm6ZLIioFAEPYxkopVkgbW4vdCqtkXlNd0WvFw8G8n4OTmd3YRDRN5_hmXv0Z_lmpCfuV1lDUutKhS3QF5qcM1re1pqdGfBmOa-AOc5YW_ZNDyWpbPRvrmwpyOgZkzbiOYL-b0HIT1X54Yp9fLle-9-XrcNqlUeSdqn4DZjD4SasfGMXrEHnEnH82G3fnZM2eRipSV4Qa8Ij33lK3AtS8pWT57filTwN88nYeY4cDXGipOJefdmCp-ur_kUnqAYnBJrJsAiEzYKaWSZ1KzQp0ybCKGUUm1xnXMuMYxYbKoTKQsWlQa2UijBUcaYYaoataBvmh6Mh7gBBa7OIklOrNy4xTDEyWqScGRFii4k6NKZIJrpiFXfDLd4TX11QmVjsE4d9UmFfh5OZxLhk1Phjbc1hPVtXwVyH_amyksrk8oRxYdMtm16x3d-ljmCp07_rJt2b3u0eLDPXnOJbcPZhvviY4AEs6s_iLf849PvqC7f8yPo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepSLAM%3A+A+Robust+Monocular+SLAM+System+With+Unsupervised+Deep+Learning&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Li%2C+Ruihao&rft.au=Wang%2C+Sen&rft.au=Gu%2C+Dongbing&rft.date=2021-04-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=68&rft.issue=4&rft.spage=3577&rft.epage=3587&rft_id=info:doi/10.1109%2FTIE.2020.2982096&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIE_2020_2982096
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon