Throughput Maximization of Delay-Aware DNN Inference in Edge Computing by Exploring DNN Model Partitioning and Inference Parallelism

Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive tasks to MEC networks for processing. The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on mobile computing Ročník 22; číslo 5; s. 3017 - 3030
Hlavní autoři: Li, Jing, Liang, Weifa, Li, Yuchen, Xu, Zichuan, Jia, Xiaohua, Guo, Song
Médium: Magazine Article
Jazyk:angličtina
Vydáno: Los Alamitos IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1536-1233, 1558-0660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive tasks to MEC networks for processing. The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and edge intelligence arises to provision real-time deep neural network (DNN) inference services for users. To accelerate the processing of the DNN inference of a user request in an MEC network, the DNN inference model usually can be partitioned into two connected parts: one part is processed in the local IoT device of the request, and another part is processed in a cloudlet (edge server) in the MEC network. Also, the DNN inference can be further accelerated by allocating multiple threads of the cloudlet to which the request is assigned. In this paper, we study a novel delay-aware DNN inference throughput maximization problem with the aim to maximize the number of delay-aware DNN service requests admitted, by accelerating each DNN inference through jointly exploring DNN partitioning and multi-thread execution parallelism. Specifically, we consider the problem under both offline and online request arrival settings: a set of DNN inference requests is given in advance, and a sequence of DNN inference requests arrives one by one without the knowledge of future arrivals, respectively. We first show that the defined problems are NP-hard. We then devise a novel constant approximation algorithm for the problem under the offline setting. We also propose an online algorithm with a provable competitive ratio for the problem under the online setting. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising
AbstractList Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive tasks to MEC networks for processing. The surging of deep learning brings new vigor and vitality to shape the prospect of intelligent Internet of Things (IoT), and edge intelligence arises to provision real-time deep neural network (DNN) inference services for users. To accelerate the processing of the DNN inference of a user request in an MEC network, the DNN inference model usually can be partitioned into two connected parts: one part is processed in the local IoT device of the request, and another part is processed in a cloudlet (edge server) in the MEC network. Also, the DNN inference can be further accelerated by allocating multiple threads of the cloudlet to which the request is assigned. In this paper, we study a novel delay-aware DNN inference throughput maximization problem with the aim to maximize the number of delay-aware DNN service requests admitted, by accelerating each DNN inference through jointly exploring DNN partitioning and multi-thread execution parallelism. Specifically, we consider the problem under both offline and online request arrival settings: a set of DNN inference requests is given in advance, and a sequence of DNN inference requests arrives one by one without the knowledge of future arrivals, respectively. We first show that the defined problems are NP-hard. We then devise a novel constant approximation algorithm for the problem under the offline setting. We also propose an online algorithm with a provable competitive ratio for the problem under the online setting. We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the proposed algorithms are promising
Author Liang, Weifa
Jia, Xiaohua
Li, Jing
Li, Yuchen
Xu, Zichuan
Guo, Song
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-7027-5574
  surname: Li
  fullname: Li, Jing
  email: jing.li5@anu.edu.au
  organization: School of Computing, The Australian National University, Canberra, ACT, Australia
– sequence: 2
  givenname: Weifa
  orcidid: 0000-0002-8207-6740
  surname: Liang
  fullname: Liang, Weifa
  email: weifa.liang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
– sequence: 3
  givenname: Yuchen
  orcidid: 0000-0001-8973-7313
  surname: Li
  fullname: Li, Yuchen
  email: yuchen.li@anu.edu.au
  organization: School of Computing, The Australian National University, Canberra, ACT, Australia
– sequence: 4
  givenname: Zichuan
  orcidid: 0000-0001-5438-1468
  surname: Xu
  fullname: Xu, Zichuan
  email: z.xu@dlut.edu.cn
  organization: School of Software, Dalian University of Technology, Dalian, Liaoning, China
– sequence: 5
  givenname: Xiaohua
  orcidid: 0000-0001-8702-8302
  surname: Jia
  fullname: Jia, Xiaohua
  email: csjia@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
– sequence: 6
  givenname: Song
  orcidid: 0000-0001-9831-2202
  surname: Guo
  fullname: Guo, Song
  email: song.guo@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
BookMark eNp9kEtLAzEURoNUsFX3gpuA66lJJpPHUmp9gFUXdT2k6U0bmSY1M0Xr2h_ujBURF65yk3znu3AGqBdiAIROKBlSSvT5dDIaMsLoMKes0FzvoT4tCpURIUivm3ORUZbnB2hQ18-EUKW17KOP6TLFzWK53jR4Yt78yr-bxseAo8OXUJltdvFqEuDL-3t8GxwkCBawD3g8XwAexVUL-rDAsy0ev62rmLpLF57EOVT40aTGd33dswnzXx3tl6kqqHy9OkL7zlQ1HH-fh-jpajwd3WR3D9e3o4u7zDJNm0xyLkShXaGYBOUsA14QTdTMAAjFnZKWW8EtOEqNJI7PFIPcWioMk1Kz_BCd7XrXKb5soG7K57hJoV1ZMqkLRRQnsk2JXcqmWNcJXGl98yWlScZXJSVlZ7xsjZed8fLbeAuSP-A6-ZVJ2_-Q0x3iAeAnrgURBSf5J376jjI
CODEN ITMCCJ
CitedBy_id crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1109_TCE_2024_3362350
crossref_primary_10_1109_TNSE_2025_3551148
crossref_primary_10_1109_TSC_2025_3547221
crossref_primary_10_3390_s24186123
crossref_primary_10_1186_s13677_023_00493_9
crossref_primary_10_1007_s12083_024_01657_3
crossref_primary_10_1109_TNET_2024_3395709
crossref_primary_10_1109_TMC_2024_3465434
crossref_primary_10_1109_TMC_2023_3332668
crossref_primary_10_1016_j_comnet_2025_111531
crossref_primary_10_1109_TVT_2024_3357769
crossref_primary_10_1007_s10462_022_10221_5
crossref_primary_10_1109_JIOT_2024_3390131
crossref_primary_10_1109_JIOT_2024_3488076
crossref_primary_10_1109_TMC_2024_3455564
crossref_primary_10_1007_s11227_024_06605_9
crossref_primary_10_1016_j_eswa_2024_126145
crossref_primary_10_1109_ACCESS_2023_3244497
crossref_primary_10_1007_s10115_023_01979_3
crossref_primary_10_1016_j_future_2024_107679
crossref_primary_10_1109_TWC_2024_3523517
crossref_primary_10_1109_TPDS_2025_3527649
crossref_primary_10_1109_TMC_2025_3550519
crossref_primary_10_1109_TPDS_2023_3277423
crossref_primary_10_1109_TII_2022_3192882
crossref_primary_10_1109_TMC_2025_3567459
crossref_primary_10_1109_JIOT_2023_3323520
crossref_primary_10_1007_s11227_025_07508_z
crossref_primary_10_1007_s12083_024_01623_z
crossref_primary_10_1109_TAI_2024_3366880
crossref_primary_10_1109_TMC_2025_3540017
crossref_primary_10_1109_TSC_2025_3586126
crossref_primary_10_1145_3604933
crossref_primary_10_1109_TMC_2024_3396612
crossref_primary_10_1109_TNSE_2023_3325420
crossref_primary_10_1016_j_tcs_2024_115047
crossref_primary_10_1109_TMC_2025_3539356
crossref_primary_10_1109_TMC_2024_3366186
crossref_primary_10_1109_TWC_2024_3404811
crossref_primary_10_1109_TFUZZ_2024_3412971
crossref_primary_10_1364_JOCN_495765
crossref_primary_10_3390_electronics13173383
crossref_primary_10_1002_ett_4962
crossref_primary_10_1109_TITS_2023_3336358
crossref_primary_10_3390_computers14010029
crossref_primary_10_1109_TC_2024_3354033
crossref_primary_10_1142_S0218126625501774
Cites_doi 10.1109/JSAC.2017.2760160
10.1109/TPAMI.2004.60
10.1109/RTSS46320.2019.00042
10.1109/TPDS.2020.3032443
10.1109/MICRO50266.2020.00070
10.5555/2999134.2999257
10.1109/INFOCOM.2019.8737614
10.1109/TMC.2020.3045471
10.1109/INFOCOM41043.2020.9155237
10.1109/LCN52139.2021.9524928
10.1109/ISCA52012.2021.00022
10.1145/3093336.3037698
10.1109/JIOT.2020.3010258
10.1109/JPROC.2019.2918951
10.1145/3373376.3378534
10.1109/TPDS.2021.3107137
10.1109/TMC.2020.3006507
10.1017/9781108924238.008
10.1109/TPDS.2020.2970048
10.1109/CVPR42600.2020.00271
10.1109/TMC.2020.2994232
10.1109/CVPR.2016.90
10.1145/3416010.3423234
10.1016/j.ipl.2006.06.003
10.1017/CBO9780511841224
10.1109/TNET.2015.2487344
ContentType Magazine Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMC.2021.3125949
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1558-0660
EndPage 3030
ExternalDocumentID 10_1109_TMC_2021_3125949
9606540
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61802048
  funderid: 10.13039/501100001809
– fundername: Research Grants Council of Hong Kong
  grantid: CityU 11214316
– fundername: Hong Kong RGC General Research Fund
  grantid: 152221/19E
– fundername: City University of Hong Kong
  grantid: 9380137/CS
  funderid: 10.13039/100007567
– fundername: Australian Research Council
  grantid: DP200101985
  funderid: 10.13039/501100000923
– fundername: Xinghai Scholar Program in Dalian University of Technology
– fundername: Hong Kong RGC Research Impact Fund
  grantid: R5060-19
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-7446659f5827e8fc2e450908baee684f87c4c64cef11a70f4b82e3cc16a277923
IEDL.DBID RIE
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970111200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1233
IngestDate Sun Nov 30 03:43:44 EST 2025
Sat Nov 29 02:23:17 EST 2025
Tue Nov 18 22:41:41 EST 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7446659f5827e8fc2e450908baee684f87c4c64cef11a70f4b82e3cc16a277923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5438-1468
0000-0001-9831-2202
0000-0002-8207-6740
0000-0001-8973-7313
0000-0001-8702-8302
0000-0002-7027-5574
PQID 2795808407
PQPubID 75730
PageCount 14
ParticipantIDs proquest_journals_2795808407
crossref_citationtrail_10_1109_TMC_2021_3125949
ieee_primary_9606540
crossref_primary_10_1109_TMC_2021_3125949
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Los Alamitos
PublicationPlace_xml – name: Los Alamitos
PublicationTitle IEEE transactions on mobile computing
PublicationTitleAbbrev TMC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref32
ref16
ref18
ref24
ref23
ref26
ref20
Simonyan (ref25) 2014
Abadi (ref2) 2016; 16
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Li (ref17)
ref9
ref4
ref3
ref6
ref5
Zeng (ref31) 2021; 29
Liu (ref19)
References_xml – year: 2014
  ident: ref25
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 16
  start-page: 265
  year: 2016
  ident: ref2
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: OSDI
– ident: ref26
  doi: 10.1109/JSAC.2017.2760160
– ident: ref4
  doi: 10.1109/TPAMI.2004.60
– ident: ref28
  doi: 10.1109/RTSS46320.2019.00042
– ident: ref29
  doi: 10.1109/TPDS.2020.3032443
– ident: ref8
  doi: 10.1109/MICRO50266.2020.00070
– ident: ref10
  doi: 10.5555/2999134.2999257
– ident: ref9
  doi: 10.1109/INFOCOM.2019.8737614
– ident: ref18
  doi: 10.1109/TMC.2020.3045471
– ident: ref20
  doi: 10.1109/INFOCOM41043.2020.9155237
– ident: ref14
  doi: 10.1109/LCN52139.2021.9524928
– ident: ref22
  doi: 10.1109/ISCA52012.2021.00022
– ident: ref12
  doi: 10.1145/3093336.3037698
– ident: ref27
  doi: 10.1109/JIOT.2020.3010258
– ident: ref32
  doi: 10.1109/JPROC.2019.2918951
– ident: ref23
  doi: 10.1145/3373376.3378534
– ident: ref15
  doi: 10.1109/TPDS.2021.3107137
– ident: ref21
  doi: 10.1109/TMC.2020.3006507
– ident: ref24
  doi: 10.1017/9781108924238.008
– ident: ref13
  doi: 10.1109/TPDS.2020.2970048
– start-page: 42
  volume-title: Proc. LCN IEEE
  ident: ref17
  article-title: Provisioning virtual services in mobile edge computing for IoT applications with multiple sources
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref3
  doi: 10.1109/TMC.2020.2994232
– volume: 29
  start-page: 595
  issue: 2
  volume-title: IEEE/ACM Trans. Netw.
  year: 2021
  ident: ref31
– ident: ref11
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1145/3416010.3423234
– start-page: 1025
  volume-title: Proc. USENIX Annu. Technol. Conf.
  ident: ref19
  article-title: Optimizing CNN model inference on CPUs
– ident: ref5
  doi: 10.1016/j.ipl.2006.06.003
– ident: ref7
  doi: 10.1017/CBO9780511841224
– ident: ref6
  doi: 10.1109/TNET.2015.2487344
SSID ssj0018997
Score 1.5397928
Snippet Mobile Edge Computing (MEC) has emerged as a promising paradigm catering to overwhelming explosions of mobile applications, by offloading compute-intensive...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3017
SubjectTerms algorithm design and analysis
Algorithms
Applications programs
Approximation algorithms
approximation and online algorithms
Artificial neural networks
Computational modeling
computing and bandwidth resource allocation and optimization
Delay
delay-aware DNN inference
Delays
DNN model inference provisioning
DNN partitioning
Edge computing
Explosions
Inference
Inference algorithms
inference parallelism
Intelligent IoT devices
Internet of Things
Machine learning
Maximization
Mobile computing
Mobile edge computing (MEC)
Optimization
Parallel processing
Partitioning
Partitioning algorithms
Task analysis
throughput maximization
Title Throughput Maximization of Delay-Aware DNN Inference in Edge Computing by Exploring DNN Model Partitioning and Inference Parallelism
URI https://ieeexplore.ieee.org/document/9606540
https://www.proquest.com/docview/2795808407
Volume 22
WOSCitedRecordID wos000970111200035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5UPHiqWsX6Igcvgmt3s-kmOZZq0YOlhwrelmw6K4W6lT583P3hTvZFQRG8LbtJWPiSzHzJzHwAFyFPyS_gxhOKFrlQPPS0DdBz_MeOyd6H1uZiE3IwUE9PergBV3UuDCLmwWd47R7zu_zxzK7cUVnbedvkYWzCppRRkatV3xgQb5BFbVSnKxOG1ZWkr9ujhx4RQR4QPyVn31XNXDNBuabKj404ty79xv_-axcaVVVo1i1w34MNzPahUUk0sHLFNuFrVOjw0Gv2YD4mL2XaJZul7Aan5tPrvps5spvBgN1XuX9skrHb8TOyYjwybiz5ZHW0Xt7YaahN2dBNvPJIl5lsvDYGfXIyLdPJ4uUAHvu3o96dVwoveJbrYElAiSjq6LSjuESVWo6C_ApfJQYxUiJV0gobCYtpEBjppyJRHAnUIDJcuoKEh7CVzTI8AmbDSCO5PdpPUid0rbglTpJYbTAQiZEtaFdYxLasSu7EMaZxzk58HRN6sUMvLtFrwWXd47WoyPFH26ZDq25XAtWC0wruuFyyi5hL3VE-8V15_HuvE9hxWvNFtOMpbC3nKzyDbfu2nCzm5_ls_AZ0kdwY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4Bi8Seyi4gymPXh70gEZo4bmwfEQUVLY04FIlb5LgTVKmkqz6A3vnhjPMSEghpb1FiW5E-2zOfPTMfwJ-QZ-QXcOMJRYtcKB562gboOf5jR2TvQ2sLsQkZx-r-Xt-uwWmTC4OIRfAZnrnH4i5_NLVLd1TWcd42eRjr8M0pZwVltlZzZ0DMQZbVUZ2yTBjWl5K-7gwHF0QFeUAMldx9VzfznREqVFU-bMWFfblq_d-fbUOrrgvNzkvkf8Aa5j-hVYs0sGrN7sDrsFTioddsYF7Gj1XiJZtmrIcTs_LOn80MWS-O2XWd_cfGObscPSArxyPzxtIVa-L1isZORW3Cbt3Uqw51mclH78agT06oZTKeP-7C3dXl8KLvVdILnuU6WBBUIoq6OusqLlFllqMgz8JXqUGMlMiUtMJGwmIWBEb6mUgVR4I1iAyXriThHmzk0xz3gdkw0kiOj_bTzEldK26JlaRWGwxEamQbOjUWia3qkjt5jElS8BNfJ4Re4tBLKvTacNL0-FfW5Pii7Y5Dq2lXAdWGoxrupFq084RL3VU-MV558Hmv37DVHw5ukpvr-O8hfHfK82Xs4xFsLGZLPIZN-7QYz2e_ipn5Bgyo318
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Throughput+Maximization+of+Delay-Aware+DNN+Inference+in+Edge+Computing+by+Exploring+DNN+Model+Partitioning+and+Inference+Parallelism&rft.jtitle=IEEE+transactions+on+mobile+computing&rft.au=Li%2C+Jing&rft.au=Liang%2C+Weifa&rft.au=Li%2C+Yuchen&rft.au=Xu%2C+Zichuan&rft.date=2023-05-01&rft.issn=1536-1233&rft.eissn=1558-0660&rft.volume=22&rft.issue=5&rft.spage=3017&rft.epage=3030&rft_id=info:doi/10.1109%2FTMC.2021.3125949&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMC_2021_3125949
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1233&client=summon