An Integrated Decision-Making Framework for Highway Autonomous Driving Using Combined Learning and Rule-Based Algorithm

In order to solve the manual labelling, long-tail effect and driving conservatism of the existing decision-making algorithm. This paper proposed an integrated decision-making framework (IDF) for highway autonomous vehicles. Firstly, states of the highway traffic are extracted by the velocity, time h...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 71; no. 4; pp. 3621 - 3632
Main Authors: Xu, Can, Zhao, Wanzhong, Liu, Jinqiang, Wang, Chunyan, Lv, Chen
Format: Journal Article
Language:English
Published: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9545, 1939-9359
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to solve the manual labelling, long-tail effect and driving conservatism of the existing decision-making algorithm. This paper proposed an integrated decision-making framework (IDF) for highway autonomous vehicles. Firstly, states of the highway traffic are extracted by the velocity, time headway (TH) and the probabilistic lane distribution of the surrounding vehicles. With the extracted traffic state, the reinforcement learning (RL) is adopted to learn the optimal state-action pair for specific scenario. Analogously, by mapping millions of traffic scenarios, huge amounts of state-action pairs can be stored in the experience pool. Then the imitation learning (IL) is further employed to memorize the experience pool by deep neural networks. The learning result shows that the accuracy of the decision network can reach 94.17%. Besides, for some imperfect decisions of the network, the rule-based method is taken to rectify by judging the long-term reward. Finally, the IDF is simulated in G25 highway and has promising results, which can always drive the vehicle to the state with high efficiency while ensuring safety.
AbstractList In order to solve the manual labelling, long-tail effect and driving conservatism of the existing decision-making algorithm. This paper proposed an integrated decision-making framework (IDF) for highway autonomous vehicles. Firstly, states of the highway traffic are extracted by the velocity, time headway (TH) and the probabilistic lane distribution of the surrounding vehicles. With the extracted traffic state, the reinforcement learning (RL) is adopted to learn the optimal state-action pair for specific scenario. Analogously, by mapping millions of traffic scenarios, huge amounts of state-action pairs can be stored in the experience pool. Then the imitation learning (IL) is further employed to memorize the experience pool by deep neural networks. The learning result shows that the accuracy of the decision network can reach 94.17%. Besides, for some imperfect decisions of the network, the rule-based method is taken to rectify by judging the long-term reward. Finally, the IDF is simulated in G25 highway and has promising results, which can always drive the vehicle to the state with high efficiency while ensuring safety.
Author Xu, Can
Lv, Chen
Liu, Jinqiang
Zhao, Wanzhong
Wang, Chunyan
Author_xml – sequence: 1
  givenname: Can
  orcidid: 0000-0001-7551-3394
  surname: Xu
  fullname: Xu, Can
  email: xucan2021@163.com
  organization: Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Wanzhong
  orcidid: 0000-0002-8750-3553
  surname: Zhao
  fullname: Zhao, Wanzhong
  email: zhaowanzhong@126.com
  organization: Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Jinqiang
  orcidid: 0000-0002-9472-627X
  surname: Liu
  fullname: Liu, Jinqiang
  email: jinqiang916@163.com
  organization: Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Chunyan
  surname: Wang
  fullname: Wang, Chunyan
  email: wcy2000@126.com
  organization: Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 5
  givenname: Chen
  orcidid: 0000-0001-6897-4512
  surname: Lv
  fullname: Lv, Chen
  email: lyuchen@ntu.edu.sg
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
BookMark eNp9kM1Lw0AQxRdRsFXvgpeA59T9SJrssbZWhYog1WvYbCZx22RXdzeW_vduqHjw4GWGGd6bx_zG6FgbDQhdEjwhBPOb9dt6QjGlE0ZSzBJ2hEaEMx5zlvJjNMKY5DFPk_QUjZ3bhDFJOBmh3UxHj9pDY4WHKlqAVE4ZHT-JrdJNtLSig52x26g2NnpQzftO7KNZ7402neldtLDqaxC-uqHOTVcqHe6sQFg9bISuope-hfhWuLCftY2xyr935-ikFq2Di59-hl6Xd-v5Q7x6vn-cz1axpJz4OGM8LzMKWGR5WkqZ8LwqMaZS5CXFXIIknMo6KWnOCa1SBgwqKphgMpF1mM7Q9eHuhzWfPThfbExvdYgs6DTlLMkongYVPqikNc5ZqIsPqzph9wXBxYC3CHiLAW_xgzdYpn8sUnnhAztvhWr_M14djAoAfnN4Rmh4iH0DR92KrA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3570609
crossref_primary_10_1109_TVT_2025_3554978
crossref_primary_10_1016_j_isatra_2025_01_033
crossref_primary_10_1109_TVT_2023_3311198
crossref_primary_10_3390_electronics13204006
crossref_primary_10_1007_s10489_025_06319_2
crossref_primary_10_1109_TVT_2024_3377288
crossref_primary_10_1016_j_robot_2025_105180
crossref_primary_10_1109_TVT_2024_3398661
crossref_primary_10_1007_s40430_023_04458_6
crossref_primary_10_3390_act14070315
crossref_primary_10_1016_j_tra_2024_104069
crossref_primary_10_1109_TITS_2022_3227122
crossref_primary_10_1049_itr2_12507
crossref_primary_10_1109_ACCESS_2024_3406260
crossref_primary_10_1109_TVT_2023_3285223
crossref_primary_10_3390_su16114578
crossref_primary_10_1109_TASE_2025_3586434
crossref_primary_10_1016_j_conengprac_2025_106315
crossref_primary_10_1109_TMECH_2023_3313170
crossref_primary_10_3390_wevj15110489
crossref_primary_10_1016_j_geits_2025_100288
crossref_primary_10_1109_TIV_2024_3430484
crossref_primary_10_1109_TVT_2023_3298635
crossref_primary_10_1007_s11082_023_05752_2
crossref_primary_10_1007_s12239_025_00351_4
crossref_primary_10_1016_j_trc_2024_104654
crossref_primary_10_1080_23307706_2025_2521782
crossref_primary_10_1177_09544070231187687
Cites_doi 10.1109/TMECH.2015.2493980
10.1109/TVT.2019.2948953
10.1109/ITSC.2018.8569568
10.1109/ICRA.2019.8793698
10.1109/ICCV.2019.00942
10.1109/TITS.2011.2157145
10.1109/TVT.2016.2555853
10.1109/TVT.2020.3027352
10.1109/JAS.2018.7511186
10.1109/TITS.2017.2768318
10.1007/978-3-030-01225-0_33
10.1109/TVT.2018.2820002
10.1109/TVT.2019.2945934
10.1049/iet-its.2019.0317
10.1016/j.conengprac.2012.09.020
10.1109/TITS.2019.2913998
10.1016/j.trc.2018.10.024
10.1109/JAS.2019.1911825
10.1109/TVT.2018.2822762
10.1109/TITS.2019.2919865
10.1109/TITS.2019.2918117
10.1109/TVT.2019.2930684
10.1115/DSCC2015-9773
10.1109/TITS.2006.883115
10.1109/JAS.2020.1003021
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2022.3150343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 3632
ExternalDocumentID 10_1109_TVT_2022_3150343
9712209
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52072175; 51775007
  funderid: 10.13039/501100001809
– fundername: China Scholarship Council
  grantid: 202006830050
  funderid: 10.13039/501100004543
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c291t-7398b72e0a785bcc498db002ca8b209cec192cf4b28912d53e3ed2a3a3c4cf3e3
IEDL.DBID RIE
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790830700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:07:46 EDT 2025
Sat Nov 29 02:59:00 EST 2025
Tue Nov 18 20:38:48 EST 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-7398b72e0a785bcc498db002ca8b209cec192cf4b28912d53e3ed2a3a3c4cf3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8750-3553
0000-0002-9472-627X
0000-0001-7551-3394
0000-0001-6897-4512
PQID 2659347206
PQPubID 85454
PageCount 12
ParticipantIDs ieee_primary_9712209
proquest_journals_2659347206
crossref_citationtrail_10_1109_TVT_2022_3150343
crossref_primary_10_1109_TVT_2022_3150343
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
Bojarski (ref23) 2016
ref17
ref19
ref18
Ros (ref16)
Bojarski (ref22) 2017
(ref24) 2004
ref26
ref25
Schulman (ref31) 2017
ref21
Rehder (ref20) 2017
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TMECH.2015.2493980
– year: 2017
  ident: ref31
  article-title: Proximal policy optimization algorithms
– year: 2016
  ident: ref23
  article-title: End to end learning for self-driving cars
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Intell. Robots Syst.
  year: 2017
  ident: ref20
  article-title: Driving like a human: Imitation learning for path planning using convolutional neural networks
– ident: ref11
  doi: 10.1109/TVT.2019.2948953
– ident: ref15
  doi: 10.1109/ITSC.2018.8569568
– ident: ref19
  doi: 10.1109/ICRA.2019.8793698
– year: 2017
  ident: ref22
  article-title: Explaining how a deep neural network trained with end-to-end learning steers a car
– ident: ref27
  doi: 10.1109/ICCV.2019.00942
– ident: ref13
  doi: 10.1109/TITS.2011.2157145
– ident: ref2
  doi: 10.1109/TVT.2016.2555853
– ident: ref29
  doi: 10.1109/TVT.2020.3027352
– ident: ref18
  doi: 10.1109/JAS.2018.7511186
– ident: ref28
  doi: 10.1109/TITS.2017.2768318
– ident: ref25
  doi: 10.1007/978-3-030-01225-0_33
– ident: ref14
  doi: 10.1109/TVT.2018.2820002
– start-page: 1
  volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist.
  ident: ref16
  article-title: A reduction of imitation learning and structured prediction to no-regret online learning
– ident: ref5
  doi: 10.1109/TVT.2019.2945934
– ident: ref9
  doi: 10.1049/iet-its.2019.0317
– ident: ref8
  doi: 10.1016/j.conengprac.2012.09.020
– ident: ref1
  doi: 10.1109/TITS.2019.2913998
– ident: ref12
  doi: 10.1016/j.trc.2018.10.024
– ident: ref17
  doi: 10.1109/JAS.2019.1911825
– ident: ref10
  doi: 10.1109/TVT.2018.2822762
– ident: ref30
  doi: 10.1109/TITS.2019.2919865
– year: 2004
  ident: ref24
  article-title: Autonomous off-road vehicle control using end-to-end learning
– ident: ref26
  doi: 10.1109/TITS.2019.2918117
– ident: ref4
  doi: 10.1109/TVT.2019.2930684
– ident: ref7
  doi: 10.1115/DSCC2015-9773
– ident: ref6
  doi: 10.1109/TITS.2006.883115
– ident: ref21
  doi: 10.1109/JAS.2020.1003021
SSID ssj0014491
Score 2.5286136
Snippet In order to solve the manual labelling, long-tail effect and driving conservatism of the existing decision-making algorithm. This paper proposed an integrated...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3621
SubjectTerms Algorithms
Artificial neural networks
Autonomous vehicles
Decision making
Driving
Headways
highway driving
Machine learning
Roads
Task analysis
Training
Trajectory
Windows
Title An Integrated Decision-Making Framework for Highway Autonomous Driving Using Combined Learning and Rule-Based Algorithm
URI https://ieeexplore.ieee.org/document/9712209
https://www.proquest.com/docview/2659347206
Volume 71
WOSCitedRecordID wos000790830700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9swGLYY4rAdxoBN62CTD1yQMHUcN7aPZVCNAwihMnGL7NcOVCrp1Car9u-xXadiYprELZFsK8kTvx9-Px6EDq2lxhsOmlBnKOFFoYgG6UjFtcg4OC84IZJNiKsreXenrjfQ8boWxjkXk8_cSbiMsXw7gzYclfWVyBgL1XpvhChWtVrriAHniR0v8xvYmwVdSJKq_vjn2DuCjHn_dEBznv-lgiKnygtBHLXLaPt1z_UBvU9WJB6uYN9BG67eRe-e9RbcQ8thjS-6XhAWnyUuHXIZ6afwqEvKwt5qxSHbY6n_4GHbhCKHWbvAZ_NJOGvAMacAe7HhXWi_TurHeo91bfFNO3Xk1OtBi4fT-9l80jw8fkS3o_Px9x8ksSwQYCpriMiVNII5qoUcGACupA2qG7Q0_qXAgccSKm68a5YxO8hd7izTuc6BQ-XvPqHNela7zwgLzRTlRlGjHa9MJSsqoShoRS1IZXkP9bsPX0JqQR6YMKZldEWoKj1UZYCqTFD10NF6xq9V-43_jN0L0KzHJVR66KDDtkz7c1GyYqByLhgtvvx71j56G9Ze5egcoM1m3rqvaAt-N5PF_Fv89Z4AdDXYHA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6aNiTYw7gMRGGAH3hBwtRx3MR-LIxqE1uFUEF7i-xjZ1Qq6dQmTPv3s12nAoGQeEskO7cvPhefywfw2lpmvOGgKXOGUVEUimqUjtZCl5lA5wUnRrKJcjqVFxfq8w683dbCOOdi8pl7Fw5jLN8usQtbZUNVZpyHar29wJyVqrW2MQMhEj9e5pewNwz6oCRTw9m3mXcFOfce6ojlIv9NCUVWlT9EcdQvk_v_92QP4CDZkWS8Af4h7LjmEez_0l3wEK7HDTntu0FYcpzYdOh5JKAikz4ti3i7lYR8j2t9Q8ZdG8oclt2aHK_mYbeBxKwC4gWHd6L9dVJH1kuiG0u-dAtH33tNaMl4cblczdvvPx7D18nH2YcTmngWKHKVtbTMlTQld0yXcmQQhZI2KG_U0viXQoceTayF8c5Zxu0od7mzXOc6R4G1P3sCu82ycU-BlJorJoxiRjtRm1rWTGJRsJpZlMqKAQz7D19hakIeuDAWVXRGmKo8VFWAqkpQDeDNdsbVpgHHP8YeBmi24xIqAzjqsa3SCl1XvBipXJScFc_-PusV3D2ZnZ9VZ6fTT8_hXrjPJmPnCHbbVedewB382c7Xq5fxN7wF3OrbZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+Decision-Making+Framework+for+Highway+Autonomous+Driving+Using+Combined+Learning+and+Rule-Based+Algorithm&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Xu%2C+Can&rft.au=Zhao%2C+Wanzhong&rft.au=Liu%2C+Jinqiang&rft.au=Wang%2C+Chunyan&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=71&rft.issue=4&rft.spage=3621&rft.epage=3632&rft_id=info:doi/10.1109%2FTVT.2022.3150343&rft.externalDocID=9712209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon