Extracting Traffic Primitives Directly From Naturalistically Logged Data for Self-Driving Applications

Developing an automated vehicle, that can handle complicated driving scenarios and appropriately interact with other road users, requires the ability to semantically learn and understand driving environment, oftentimes, based on analyzing massive amounts of naturalistic driving data. An important pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 3; číslo 2; s. 1223 - 1229
Hlavní autoři: Wang, Wenshuo, Zhao, Ding
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Developing an automated vehicle, that can handle complicated driving scenarios and appropriately interact with other road users, requires the ability to semantically learn and understand driving environment, oftentimes, based on analyzing massive amounts of naturalistic driving data. An important paradigm that allows automated vehicles to both learn from human drivers and gain insights is understanding the principal compositions of the entire traffic, termed as traffic primitives. However, the exploding data growth presents a great challenge in extracting primitives from high-dimensional time-series traffic data with various types of road users engaged. Therefore, automatically extracting primitives is becoming one of the cost-efficient ways to help autonomous vehicles understand and predict the complex traffic scenarios. In addition, the extracted primitives from raw data should 1) be appropriate for automated driving applications and also 2) be easily used to generate new traffic scenarios. However, existing literature does not provide a method to automatically learn these primitives from large-scale traffic data. The contribution of this letter has two manifolds. The first one is that we proposed a new framework to generate new traffic scenarios from a handful of limited traffic data. The second one is that, we introduce a nonparametric Bayesian learning method-a sticky hierarchical Dirichlet process hidden Markov model-to automatically extract primitives from multidimensional traffic data without prior knowledge of the primitive settings. The developed method is then validated using one day of naturalistic driving data. Experiment results show that the nonparametric Bayesian learning method is able to extract primitives from traffic scenarios where both the binary and continuous events coexist.
AbstractList Developing an automated vehicle, that can handle complicated driving scenarios and appropriately interact with other road users, requires the ability to semantically learn and understand driving environment, oftentimes, based on analyzing massive amounts of naturalistic driving data. An important paradigm that allows automated vehicles to both learn from human drivers and gain insights is understanding the principal compositions of the entire traffic, termed as traffic primitives. However, the exploding data growth presents a great challenge in extracting primitives from high-dimensional time-series traffic data with various types of road users engaged. Therefore, automatically extracting primitives is becoming one of the cost-efficient ways to help autonomous vehicles understand and predict the complex traffic scenarios. In addition, the extracted primitives from raw data should 1) be appropriate for automated driving applications and also 2) be easily used to generate new traffic scenarios. However, existing literature does not provide a method to automatically learn these primitives from large-scale traffic data. The contribution of this letter has two manifolds. The first one is that we proposed a new framework to generate new traffic scenarios from a handful of limited traffic data. The second one is that, we introduce a nonparametric Bayesian learning method-a sticky hierarchical Dirichlet process hidden Markov model-to automatically extract primitives from multidimensional traffic data without prior knowledge of the primitive settings. The developed method is then validated using one day of naturalistic driving data. Experiment results show that the nonparametric Bayesian learning method is able to extract primitives from traffic scenarios where both the binary and continuous events coexist.
Author Ding Zhao
Wenshuo Wang
Author_xml – sequence: 1
  givenname: Wenshuo
  orcidid: 0000-0002-1860-8351
  surname: Wang
  fullname: Wang, Wenshuo
– sequence: 2
  givenname: Ding
  orcidid: 0000-0002-9400-8446
  surname: Zhao
  fullname: Zhao, Ding
BookMark eNp9kM1LAzEQxYNUsNbeBS8Bz1vzsZvsHks_VFhUtJ5DNpuUlO1uTdJi_3tTW0Q8eJpheG_mze8S9Nqu1QBcYzTCGBV35et4RBDOR4QXKUPpGegTynlCOWO9X_0FGHq_QgjhjHBaZH1gZp_BSRVsu4QLJ42xCr44u7bB7rSHU-u0Cs0ezl23hk8ybJ1srA9WySZOy2651DWcyiCh6Rx8041Jps7uDuvGm00TdcF2rb8C50Y2Xg9PdQDe57PF5CEpn-8fJ-MyUaTAIeFEVqgiWZ0xo6jiqKo4ZTQ3KZMEmyKtGc3S2nCa55mRudK6zmpFcFSlUhE6ALfHvRvXfWy1D2LVbV0bTwpCioJyROPjA8COKuU67502QtnwHTSysI3ASBywiohVHLCKE9ZoRH-Mm8hKuv1_lpujxWqtf-Q5YSiPYb4AuNmFVw
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_JRFID_2022_3223092
crossref_primary_10_1016_j_trc_2021_103317
crossref_primary_10_1109_TITS_2021_3092756
crossref_primary_10_1109_TIV_2022_3196396
crossref_primary_10_1109_TIV_2019_2960935
crossref_primary_10_1109_TVT_2022_3221807
crossref_primary_10_1016_j_aap_2023_107279
crossref_primary_10_1080_15389588_2019_1630827
crossref_primary_10_1007_s42154_024_00300_4
crossref_primary_10_1007_s42979_023_01714_3
crossref_primary_10_1016_j_aap_2025_108156
crossref_primary_10_1109_TITS_2022_3196623
crossref_primary_10_1016_j_aap_2023_107155
crossref_primary_10_1016_j_trc_2019_09_009
crossref_primary_10_1145_3626314
crossref_primary_10_1109_ACCESS_2023_3258623
crossref_primary_10_1109_TITS_2021_3127491
crossref_primary_10_1109_ACCESS_2020_2989082
crossref_primary_10_1109_TRO_2023_3267020
crossref_primary_10_1109_LRA_2020_2966412
crossref_primary_10_3390_electronics13214303
crossref_primary_10_1109_ACCESS_2020_2993730
crossref_primary_10_1109_TITS_2020_3014612
crossref_primary_10_1109_TITS_2021_3057645
crossref_primary_10_1080_23249935_2025_2451678
crossref_primary_10_1109_LRA_2022_3207557
crossref_primary_10_1016_j_eswa_2020_114442
crossref_primary_10_1016_j_trc_2025_105106
crossref_primary_10_1109_TITS_2023_3347535
crossref_primary_10_3390_wevj14080208
crossref_primary_10_1109_TNNLS_2020_3042981
crossref_primary_10_1109_TITS_2023_3259322
crossref_primary_10_1109_TITS_2018_2849266
crossref_primary_10_1109_TIV_2024_3358329
crossref_primary_10_3390_app11010035
crossref_primary_10_1007_s42154_024_00305_z
crossref_primary_10_1109_TSE_2025_3593832
crossref_primary_10_1155_2018_6132139
crossref_primary_10_1109_TITS_2020_2991757
crossref_primary_10_1016_j_physa_2025_130923
Cites_doi 10.1214/08-BA326
10.1109/IVS.2017.7995834
10.1109/THMS.2017.2736948
10.1126/science.357.6346.16
10.1109/TITS.2011.2158001
10.1109/IVS.2017.7995850
10.1109/IVS.2016.7535455
10.15607/RSS.2017.XIII.065
10.1109/TSP.2010.2102756
10.1109/TITS.2016.2598064
10.1109/TIV.2017.2720459
10.1016/j.artint.2014.05.006
10.1109/TSMC.2015.2465933
10.1109/TITS.2014.2376525
10.1109/TITS.2015.2453404
10.1109/TITS.2015.2449837
10.1109/TIV.2016.2586307
10.1126/science.aab3050
10.1126/science.1252254
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2018.2794604
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1229
ExternalDocumentID 10_1109_LRA_2018_2794604
8260870
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-72ab0b25d56fc3c70bb73638f46a21f94d6354df73885fa8ceed5dc217364ac23
IEDL.DBID RIE
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000424646100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 06:54:11 EST 2025
Tue Nov 18 22:33:11 EST 2025
Sat Nov 29 06:03:00 EST 2025
Wed Aug 27 02:51:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-72ab0b25d56fc3c70bb73638f46a21f94d6354df73885fa8ceed5dc217364ac23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1860-8351
0000-0002-9400-8446
PQID 2299370327
PQPubID 4437225
PageCount 7
ParticipantIDs crossref_primary_10_1109_LRA_2018_2794604
crossref_citationtrail_10_1109_LRA_2018_2794604
ieee_primary_8260870
proquest_journals_2299370327
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref24
ref12
ref23
ref15
ref14
wang (ref13) 0
ref11
ref22
ref10
ref2
ref17
ref16
zhao (ref21) 0
ref19
ref18
ref7
ref9
ref4
ref3
ref6
ref5
johnson (ref20) 2013; 14
(ref8) 2017
wang (ref1) 2017; 18
References_xml – ident: ref19
  doi: 10.1214/08-BA326
– year: 0
  ident: ref13
  article-title: Driving style analysis using primitive driving patterns with Bayesian nonparametric approaches
  publication-title: arXiv 1708 08986
– ident: ref3
  doi: 10.1109/IVS.2017.7995834
– ident: ref23
  doi: 10.1109/THMS.2017.2736948
– start-page: 1863
  year: 0
  ident: ref21
  article-title: Trafficnet: An open naturalistic driving scenario library
  publication-title: Proc IEEE 20th Intell Transp Syst Conf
– ident: ref7
  doi: 10.1126/science.357.6346.16
– ident: ref6
  doi: 10.1109/TITS.2011.2158001
– ident: ref2
  doi: 10.1109/IVS.2017.7995850
– ident: ref15
  doi: 10.1109/IVS.2016.7535455
– ident: ref24
  doi: 10.15607/RSS.2017.XIII.065
– ident: ref18
  doi: 10.1109/TSP.2010.2102756
– ident: ref17
  doi: 10.1109/TITS.2016.2598064
– year: 2017
  ident: ref8
  article-title: How drive.ai is mastering autonomous driving with deep learning.
– ident: ref4
  doi: 10.1109/TIV.2017.2720459
– ident: ref22
  doi: 10.1016/j.artint.2014.05.006
– ident: ref10
  doi: 10.1109/TSMC.2015.2465933
– ident: ref11
  doi: 10.1109/TITS.2014.2376525
– ident: ref5
  doi: 10.1109/TITS.2015.2453404
– volume: 18
  start-page: 1440
  year: 2017
  ident: ref1
  article-title: Human-centered feed-forward control of a vehicle steering system based on a driver's path-following characteristics
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref9
  doi: 10.1109/TITS.2015.2449837
– volume: 14
  start-page: 673
  year: 2013
  ident: ref20
  article-title: Bayesian nonparametric hidden semi-Markov models
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/TIV.2016.2586307
– ident: ref14
  doi: 10.1126/science.aab3050
– ident: ref16
  doi: 10.1126/science.1252254
SSID ssj0001527395
Score 2.3767648
Snippet Developing an automated vehicle, that can handle complicated driving scenarios and appropriately interact with other road users, requires the ability to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1223
SubjectTerms Automation
Bayes methods
Bayesian analysis
big data in robotics and automation
Data mining
Dirichlet problem
Hidden Markov models
Intelligent transportation systems
Learning systems
Machine learning
Markov chains
Mechanical engineering
Roads
Teaching methods
Traffic flow
Traffic information
Vehicles
Title Extracting Traffic Primitives Directly From Naturalistically Logged Data for Self-Driving Applications
URI https://ieeexplore.ieee.org/document/8260870
https://www.proquest.com/docview/2299370327
Volume 3
WOSCitedRecordID wos000424646100049&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-44UEPfovTKTl4EezWJmnTHIfb8KBD_ABvJc3HEOYmWyd68W83SbspKIK3UpJQ-sv7SN57vwdwSkRIicnTII2YCWgcqYBzbOVKJTjS1h4rqnyzCTYYpI-P_GYFzpe1MFprn3ymW-7Rx_LVRM7dVVnbusKh3V81qDHGylqtr_sUxyTG40UkMuTtq9uOS91KW9iRqFed2BaWx7dS-aF_vVHpb_7vc7Zgo3IeUadEextW9HgH1r9RCu6C6b0VvvBpPETWDjmCCHTjWnc5tTZDpYYbvaP-dPKMBsKzbniuZjGyb68mw6FWqCsKgaw3i-70yATd6ZO7dUCdb7HuPXjo9-4vLoOql0IgMY-KgGGRhzmOVZwYSSQL85wRK3uGJgJHhlNlPQ-qDCNpGhuROtsZK2kPLCShQmKyD_XxZKwPAKkkl1gbohMaUhVb-yYEJYrmXMW5wLoB7cV_zmRFNO76XYwyf-AIeWaRyRwyWYVMA86WM15Kko0_xu46JJbjKhAa0FxAmVVSOMswdt5XSDA7_H3WEay5tctMnCbUi-lcH8OqfC2eZtMTqF1_9E78NvsE7UHReA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-J0ah58Eaxrc2mbx6EOxTnEC_hW0lyGMDfZqui_N0m7KSiCb6UkpPTLuSTnnO8AHBIRUmLyNEijxASURSrgHFu5UjGOtLXHiirfbCLpdtPHR34zA8fTWhittU8-0yfu0cfy1VC-uquypnWFQ7u_ZmGOUYqjslrr60bFcYlxNolFhrzZuW255K30BDsa9aoX28T2-GYqPzSwNyvtlf990CosV-4japV4r8GMHqzD0jdSwQ0w5--FL30a9JC1RI4iAt245l1OsY1RqeP6H6g9Gj6jrvC8G56tWfTt286w19MKnYlCIOvPojvdN8HZ6MndO6DWt2j3Jjy0z-9PL4Kqm0IgMY-KIMEiD3PMFIuNJDIJ8zwhVvoMjQWODKfK-h5UmYSkKTMiddaTKWmPLCSmQmKyBbXBcKC3Aak4l1gbomMaUsWshROCEkVzrlgusK5Dc_KfM1lRjbuOF_3MHzlCnllkModMViFTh6PpjJeSZuOPsRsOiem4CoQ6NCZQZpUcjjOMnf8VEpzs_D7rABYu7q87Weeye7ULi26dMi-nAbVi9Kr3YF6-FU_j0b7fbJ8BrdOO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracting+Traffic+Primitives+Directly+From+Naturalistically+Logged+Data+for+Self-Driving+Applications&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Wang%2C+Wenshuo&rft.au=Zhao%2C+Ding&rft.date=2018-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=3&rft.issue=2&rft.spage=1223&rft_id=info:doi/10.1109%2FLRA.2018.2794604&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon