Hybrid data-driven feature extraction-enabled surface modeling for metal additive manufacturing

Metal additive manufacturing (AM) has become popular in a large variety of applications due to its excellent capabilities of handling complex geometries and novel materials. However, due to its process complexity, layer-wise surface quality issue is still one of the critical concerns to further broa...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced manufacturing technology Vol. 121; no. 7-8; pp. 4643 - 4662
Main Authors: Shi, Zhangyue, Mandal, Soumya, Harimkar, Sandip, Liu, Chenang
Format: Journal Article
Language:English
Published: London Springer London 01.08.2022
Subjects:
ISSN:0268-3768, 1433-3015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metal additive manufacturing (AM) has become popular in a large variety of applications due to its excellent capabilities of handling complex geometries and novel materials. However, due to its process complexity, layer-wise surface quality issue is still one of the critical concerns to further broaden adoption of metal AM, because of the impact on products’ property and functionality. The existing experimental studies from literature have shown machine parameters could significantly affect the resulting surface morphology of printing products. Consequently, it is urgently necessary to analyze and model printing surface in metal AM, and thereby printing surface can be further correlated with machine parameters, enabling more appropriate quality assurance applications such as process design and post anomaly detection. However, there are two major practical challenges to realize this goal: (1)  the printing surface profiles in metal AM are highly nonlinear; and (2) the measured surface profiles usually have significant outliers, shifts, and porosities. To address these two challenges, this paper models surface profile in a decomposition-based framework and develops a hybrid data-driven feature extraction approach, which integrates a robust convolutional autoencoder-based approach and conventional statistics-based approach. Through the incorporation of supervised machine learning algorithm, the underlying relationship between machine parameters and printing surface can be thereby clearly quantified. To validate effectiveness of the proposed method, both simulation and a real-world case study in laser-engineered net shaping (LENS) were conducted in this work. The results demonstrate that the classification accuracy using the proposed method could achieve 86% in simulation cases and 74% in an actual LENS experiment, which outperforms the benchmark methods with better robustness. Therefore, it demonstrates that the developed approach is very promising for surface morphology analysis and process optimization of metal AM.
AbstractList Metal additive manufacturing (AM) has become popular in a large variety of applications due to its excellent capabilities of handling complex geometries and novel materials. However, due to its process complexity, layer-wise surface quality issue is still one of the critical concerns to further broaden adoption of metal AM, because of the impact on products’ property and functionality. The existing experimental studies from literature have shown machine parameters could significantly affect the resulting surface morphology of printing products. Consequently, it is urgently necessary to analyze and model printing surface in metal AM, and thereby printing surface can be further correlated with machine parameters, enabling more appropriate quality assurance applications such as process design and post anomaly detection. However, there are two major practical challenges to realize this goal: (1)  the printing surface profiles in metal AM are highly nonlinear; and (2) the measured surface profiles usually have significant outliers, shifts, and porosities. To address these two challenges, this paper models surface profile in a decomposition-based framework and develops a hybrid data-driven feature extraction approach, which integrates a robust convolutional autoencoder-based approach and conventional statistics-based approach. Through the incorporation of supervised machine learning algorithm, the underlying relationship between machine parameters and printing surface can be thereby clearly quantified. To validate effectiveness of the proposed method, both simulation and a real-world case study in laser-engineered net shaping (LENS) were conducted in this work. The results demonstrate that the classification accuracy using the proposed method could achieve 86% in simulation cases and 74% in an actual LENS experiment, which outperforms the benchmark methods with better robustness. Therefore, it demonstrates that the developed approach is very promising for surface morphology analysis and process optimization of metal AM.
Author Liu, Chenang
Shi, Zhangyue
Harimkar, Sandip
Mandal, Soumya
Author_xml – sequence: 1
  givenname: Zhangyue
  surname: Shi
  fullname: Shi, Zhangyue
  organization: School of Industrial Engineering and Management, Oklahoma State University
– sequence: 2
  givenname: Soumya
  surname: Mandal
  fullname: Mandal, Soumya
  organization: School of Mechanical and Aerospace Engineering, Oklahoma State University
– sequence: 3
  givenname: Sandip
  surname: Harimkar
  fullname: Harimkar, Sandip
  organization: School of Mechanical and Aerospace Engineering, Oklahoma State University
– sequence: 4
  givenname: Chenang
  surname: Liu
  fullname: Liu, Chenang
  email: chenang.liu@okstate.edu
  organization: School of Industrial Engineering and Management, Oklahoma State University
BookMark eNp9kMFOwzAQRC1UJErhBzj5BwzruLGdI6qAIlXiAmfLidcoVeJUjotovx6HcuJQaVd7mTfamWsyC0NAQu443HMA9TACcAUMioJBJUGz4wWZ86UQTAAvZ2QOhdRMKKmvyPU4brNccqnnxKwPdWwddTZZ5mL7hYF6tGkfkeJ3irZJ7RAYBlt36Oi4j942SPvBYdeGT-qHSHtMtqPWuTZlnvY27LMoW2TBDbn0thvx9u8uyMfz0_tqzTZvL6-rxw1rioonpgpRY2GF87UqnVY5lCzLCoRqwPO8ymkr_bJ2rkKuEZxutERVTQMSxILok28Th3GM6E3TJjv9njO0neFgpqLMqSiTizK_RZljRot_6C62vY2H85A4QeNuionRbId9DDniOeoHtfeATw
CitedBy_id crossref_primary_10_1080_24725854_2024_2428642
crossref_primary_10_1080_24725854_2024_2443592
crossref_primary_10_3390_s24154864
Cites_doi 10.1007/978-3-319-71249-9_3
10.2319/051213-365.1
10.1016/j.optlastec.2018.11.054
10.1007/BF00058655
10.1016/j.optlastec.2018.04.007
10.1016/j.measurement.2014.09.025
10.1016/j.matdes.2017.03.065
10.1016/j.cirp.2008.03.110
10.1016/j.optlastec.2019.105592
10.3390/s17040933
10.1038/nbt1206-1565
10.1016/j.matdes.2020.108762
10.1016/j.precisioneng.2019.06.004
10.1016/j.jmsy.2018.04.001
10.1016/j.msea.2017.07.071
10.1177/0954406218813384
10.1016/j.jmapro.2019.05.001
10.3390/ma13051115
10.1016/j.procir.2016.02.347
10.1016/j.promfg.2021.06.005
10.1007/s00170-015-7077-3
10.1016/j.jmapro.2019.07.027
10.1115/1.4045419
10.1145/3097983.3098052
10.1016/j.precisioneng.2018.01.002
10.1109/TBDATA.2017.2717439
10.1016/j.jmsy.2016.09.007
10.1016/j.promfg.2020.05.112
10.1007/BF01304620
10.1007/s10845-021-01879-9
10.1007/978-3-642-15883-4_27
10.1007/s11665-014-0958-z
10.1023/A:1010933404324
10.1016/j.jmapro.2015.06.026
10.1007/s00170-018-03245-1
10.1115/1.4037891
10.1016/j.surfcoat.2016.09.019
10.1016/j.jmapro.2019.04.020
10.1007/s10856-008-3478-2
10.1016/j.cja.2017.08.019
10.1016/j.matchar.2015.06.017
10.1016/j.apsusc.2015.03.184
10.1109/CVPR.2014.244
10.1016/j.precisioneng.2018.09.007
10.1115/1.4049521
10.1016/j.precisioneng.2016.06.001
10.1016/S0167-9473(01)00065-2
10.1016/j.isprsjprs.2011.11.002
10.1109/ASMC.2017.7969228
10.1016/j.jmsy.2021.04.007
10.1016/j.ceramint.2017.03.085
10.1088/1757-899X/272/1/012017
10.1016/j.compositesb.2018.02.012
10.1561/9781601984616
10.1016/S1526-6125(05)70080-3
10.1201/b11022
10.1007/s10845-022-01933-0
10.1017/CBO9780511804441
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
DBID AAYXX
CITATION
DOI 10.1007/s00170-022-09608-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 4662
ExternalDocumentID 10_1007_s00170_022_09608_z
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-723be2a3dfb75d871006559037c0f1c0f7d8a6f4bdd9e18e0d8c86e79e79e0603
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Sat Nov 29 03:17:12 EST 2025
Tue Nov 18 22:49:45 EST 2025
Fri Feb 21 02:44:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Surface modeling
Robust convolutional autoencoder
Additive manufacturing
Hybrid feature extraction
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-723be2a3dfb75d871006559037c0f1c0f7d8a6f4bdd9e18e0d8c86e79e79e0603
PageCount 20
ParticipantIDs crossref_citationtrail_10_1007_s00170_022_09608_z
crossref_primary_10_1007_s00170_022_09608_z
springer_journals_10_1007_s00170_022_09608_z
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2022
Publisher Springer London
Publisher_xml – name: Springer London
References Khanzadeh (CR11) 2018; 47
Shi (CR21) 2021; 53
Ferguson (CR28) 2015; 19
Zhai (CR27) 2019; 27
Senthilkumar, Tamizharasan, Anandakrishnan (CR25) 2014; 58
Ansari (CR23) 2019; 112
Cabanettes (CR35) 2018; 52
Shu (CR14) 2020; 142
Fox, Moylan, Lane (CR42) 2016; 45
CR38
Wang (CR47) 2017; 17
CR34
Oliveira, LaLonde, Ma (CR18) 2020; 193
CR33
Jiang (CR19) 2019; 119
Liu (CR10) 2019; 45
Zhang (CR22) 2017; 703
Liu (CR20) 2019; 102
Lin (CR36) 2019; 60
CR49
Kummailil (CR17) 2005; 7
Gong (CR69) 2014; 1
Liu (CR8) 2019; 42
Khalid, Peng (CR26) 2021; 143
CR41
Rodriguez-Galiano (CR60) 2012; 67
Ahmed (CR2) 2019; 42
Townsend (CR43) 2016; 46
Townsend (CR58) 2016; 46
CR16
Frazier (CR3) 2014; 23
CR13
CR12
CR56
Culmone, Smit, Breedveld (CR6) 2019; 27
CR55
CR54
CR53
Lou (CR57) 2019; 57
Jiang, Scott, Whitehouse (CR46) 2008; 57
CR51
Yueling (CR32) 2018; 31
Bandyopadhyay (CR4) 2009; 20
Chacón (CR67) 2017; 124
Tootooni (CR45) 2016; 41
Tsai, Chen, Chen (CR48) 1998; 14
Ding (CR39) 2015; 106
Stašić, Božić (CR31) 2016; 307
Razavi (CR9) 2021; 235
Ding (CR24) 2015; 81
Noble (CR63) 2006; 24
Kustas (CR29) 2018; 21
Friedman (CR65) 2002; 38
Zhang, Sahasrabudhe, Bandyopadhyay (CR1) 2015; 346
Kim, Heo, Lagravère (CR40) 2014; 84
Ngo (CR7) 2018; 143
Ye (CR37) 2020; 48
CR66
CR64
Shi (CR15) 2022; -
Hertlein (CR50) 2021; 59
CR62
Breiman (CR59) 2001; 45
Breiman (CR61) 1996; 24
Li (CR5) 2017; 43
Thompson (CR44) 2018; 20
Yu (CR68) 2018; 106
Chen (CR52) 2017; 7
Patalas-Maliszewska (CR30) 2020; 13
N Ahmed (9608_CR2) 2019; 42
VF Rodriguez-Galiano (9608_CR60) 2012; 67
WS Noble (9608_CR63) 2006; 24
Y Zhai (9608_CR27) 2019; 27
Z Ye (9608_CR37) 2020; 48
JC Fox (9608_CR42) 2016; 45
D-M Tsai (9608_CR48) 1998; 14
N Hertlein (9608_CR50) 2021; 59
R Ding (9608_CR39) 2015; 106
AB Kustas (9608_CR29) 2018; 21
X Jiang (9608_CR46) 2008; 57
M Chen (9608_CR52) 2017; 7
9608_CR41
9608_CR49
S Lou (9608_CR57) 2019; 57
TD Ngo (9608_CR7) 2018; 143
L Breiman (9608_CR61) 1996; 24
M Khanzadeh (9608_CR11) 2018; 47
M Zhang (9608_CR22) 2017; 703
L Breiman (9608_CR59) 2001; 45
D Shu (9608_CR14) 2020; 142
A Bandyopadhyay (9608_CR4) 2009; 20
JH Friedman (9608_CR65) 2002; 38
9608_CR51
9608_CR53
9608_CR55
X Wang (9608_CR47) 2017; 17
9608_CR54
9608_CR13
9608_CR12
J Stašić (9608_CR31) 2016; 307
9608_CR56
J-H Yu (9608_CR68) 2018; 106
A Townsend (9608_CR43) 2016; 46
9608_CR16
JP Oliveira (9608_CR18) 2020; 193
N Senthilkumar (9608_CR25) 2014; 58
Y Zhang (9608_CR1) 2015; 346
Z Liu (9608_CR8) 2019; 42
F Cabanettes (9608_CR35) 2018; 52
M Ansari (9608_CR23) 2019; 112
J Kim (9608_CR40) 2014; 84
H Gong (9608_CR69) 2014; 1
9608_CR62
J Patalas-Maliszewska (9608_CR30) 2020; 13
W Lin (9608_CR36) 2019; 60
9608_CR64
Y Li (9608_CR5) 2017; 43
9608_CR66
D Ding (9608_CR24) 2015; 81
A Thompson (9608_CR44) 2018; 20
G Yueling (9608_CR32) 2018; 31
SMJ Razavi (9608_CR9) 2021; 235
WE Frazier (9608_CR3) 2014; 23
M Khalid (9608_CR26) 2021; 143
S Liu (9608_CR10) 2019; 45
C Culmone (9608_CR6) 2019; 27
MS Tootooni (9608_CR45) 2016; 41
A Townsend (9608_CR58) 2016; 46
J Chacón (9608_CR67) 2017; 124
Z Liu (9608_CR20) 2019; 102
H-Z Jiang (9608_CR19) 2019; 119
Z Shi (9608_CR21) 2021; 53
9608_CR33
J Kummailil (9608_CR17) 2005; 7
9608_CR34
J Ferguson (9608_CR28) 2015; 19
Z Shi (9608_CR15) 2022; -
9608_CR38
References_xml – ident: CR49
– volume: 19
  start-page: 163
  year: 2015
  end-page: 170
  ident: CR28
  article-title: Semi-empirical model of deposit size and porosity in 420 stainless steel and 4140 steel using laser engineered net shaping
  publication-title: J Manuf Process
– volume: 42
  start-page: 167
  year: 2019
  end-page: 191
  ident: CR2
  article-title: Direct metal fabrication in rapid prototyping: a review
  publication-title: J Manuf Process
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  end-page: 378
  ident: CR65
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal
– ident: CR16
– ident: CR51
– ident: CR12
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  end-page: 1928
  ident: CR3
  article-title: Metal additive manufacturing: a review
  publication-title: J Mater Eng Perform
– volume: -
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR15
  article-title: An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing
  publication-title: J Intell Manuf
– volume: 59
  start-page: 675
  year: 2021
  end-page: 685
  ident: CR50
  article-title: Generative adversarial network for early-stage design flexibility in topology optimization for additive manufacturing
  publication-title: J Manuf Syst
– ident: CR54
– volume: 20
  start-page: 29
  issue: 1
  year: 2009
  ident: CR4
  article-title: Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants
  publication-title: J Mater Sci - Mater Med
– volume: 57
  start-page: 1
  year: 2019
  end-page: 15
  ident: CR57
  article-title: Characterisation methods for powder bed fusion processed surface topography
  publication-title: Precis Eng
– volume: 46
  start-page: 34
  year: 2016
  end-page: 47
  ident: CR58
  publication-title: Surface texture metrology for metal additive manufacturing: a review
– volume: 17
  start-page: 933
  issue: 4
  year: 2017
  ident: CR47
  article-title: Using wavelet packet transform for surface roughness evaluation and texture extraction
  publication-title: Sensors
– volume: 235
  start-page: 1930
  issue: 10
  year: 2021
  end-page: 1937
  ident: CR9
  article-title: Porosity effect on tensile behavior of Ti-6Al-4V specimens produced by laser engineered net shaping technology
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
– volume: 52
  start-page: 249
  year: 2018
  end-page: 265
  ident: CR35
  article-title: Topography of as built surfaces generated in metal additive manufacturing: a multi scale analysis from form to roughness
  publication-title: Precis Eng
– volume: 27
  start-page: 461
  year: 2019
  end-page: 473
  ident: CR6
  article-title: Additive manufacturing of medical instruments: A state-of-the-art review
  publication-title: Addit Manuf
– volume: 7
  start-page: 750
  issue: 4
  year: 2017
  end-page: 758
  ident: CR52
  article-title: Deep feature learning for medical image analysis with convolutional autoencoder neural network
  publication-title: IEEE Transactions on Big Data
– volume: 142
  issue: 7
  year: 2020
  ident: CR14
  article-title: 3d design using generative adversarial networks and physics-based validation
  publication-title: J Mech Des
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  ident: CR61
  article-title: Bagging predictors
  publication-title: Mach Learn
– volume: 45
  start-page: 131
  year: 2016
  end-page: 134
  ident: CR42
  article-title: Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing
  publication-title: Procedia Cirp
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  end-page: 1567
  ident: CR63
  article-title: What is a support vector machine?
  publication-title: Nat Biotechnol
– volume: 84
  start-page: 443
  issue: 3
  year: 2014
  end-page: 450
  ident: CR40
  article-title: Accuracy of laser-scanned models compared to plaster models and cone-beam computed tomography
  publication-title: Angle Orthod
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR59
  article-title: Random forests
  publication-title: Mach Learn
– volume: 42
  start-page: 96
  year: 2019
  end-page: 105
  ident: CR8
  article-title: Influence of energy density on macro/micro structures and mechanical properties of as-deposited Inconel 718 parts fabricated by laser engineered net shaping
  publication-title: J Manuf Process
– volume: 7
  start-page: 42
  issue: 1
  year: 2005
  end-page: 50
  ident: CR17
  article-title: Effect of select LENS™ processing parameters on the deposition of Ti-6Al-4V
  publication-title: J Manuf Process
– volume: 119
  year: 2019
  ident: CR19
  article-title: Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method
  publication-title: Opt Laser Technol
– volume: 1
  start-page: 87
  year: 2014
  end-page: 98
  ident: CR69
  article-title: Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes
  publication-title: Addit Manuf
– volume: 193
  year: 2020
  ident: CR18
  article-title: Processing parameters in laser powder bed fusion metal additive manufacturing
  publication-title: Mater Des
– volume: 48
  start-page: 770
  year: 2020
  end-page: 775
  ident: CR37
  article-title: A deep learning approach for the identification of small process shifts in additive manufacturing using 3D point clouds
  publication-title: Procedia Manuf
– volume: 14
  start-page: 412
  issue: 6
  year: 1998
  end-page: 422
  ident: CR48
  article-title: A vision system for surface roughness assessment using neural networks
  publication-title: Int J Adv Manuf Technol
– volume: 124
  start-page: 143
  year: 2017
  end-page: 157
  ident: CR67
  article-title: Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection
  publication-title: Mater Des
– volume: 13
  start-page: 1115
  issue: 5
  year: 2020
  ident: CR30
  article-title: Single tracks as a key factor in additive manufacturing technology—analysis of research trends and metal deposition behavior
  publication-title: Materials
– ident: CR64
– volume: 57
  start-page: 555
  issue: 1
  year: 2008
  end-page: 558
  ident: CR46
  article-title: Wavelets and their applications for surface metrology
  publication-title: CIRP Ann
– volume: 47
  start-page: 69
  year: 2018
  end-page: 82
  ident: CR11
  article-title: Porosity prediction: supervised-learning of thermal history for direct laser deposition
  publication-title: J Manuf Syst
– ident: CR66
– ident: CR53
– volume: 106
  start-page: 87
  year: 2018
  end-page: 93
  ident: CR68
  article-title: Repairing casting part using laser assisted additive metal-layer deposition and its mechanical properties
  publication-title: Opt Laser Technol
– ident: CR33
– volume: 53
  start-page: 16
  year: 2021
  end-page: 23
  ident: CR21
  article-title: Surface morphology analysis using convolutional autoencoder in additive manufacturing with laser engineered net shaping
  publication-title: Procedia Manuf
– volume: 112
  start-page: 485
  year: 2019
  end-page: 493
  ident: CR23
  article-title: Laser directed energy deposition of water-atomized iron powder: Process optimization and microstructure of single-tracks
  publication-title: Opt Laser Technol
– volume: 46
  start-page: 34
  year: 2016
  end-page: 47
  ident: CR43
  article-title: Surface texture metrology for metal additive manufacturing: a review
  publication-title: Precis Eng
– ident: CR56
– volume: 81
  start-page: 465
  issue: 1
  year: 2015
  end-page: 481
  ident: CR24
  article-title: Wire-feed additive manufacturing of metal components: technologies, developments and future interests
  publication-title: Int J Adv Manuf Technol
– volume: 703
  start-page: 251
  year: 2017
  end-page: 261
  ident: CR22
  article-title: Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L: influence of processing parameters
  publication-title: Mater Sci Eng A
– volume: 143
  issue: 3
  year: 2021
  ident: CR26
  article-title: Investigation of printing parameters of additive manufacturing process for sustainability using Design of Experiments
  publication-title: J Mech Des
– volume: 27
  start-page: 334
  year: 2019
  end-page: 344
  ident: CR27
  article-title: Understanding the microstructure and mechanical properties of Ti-6Al-4V and Inconel 718 alloys manufactured by laser engineered net shaping
  publication-title: Addit Manuf
– volume: 21
  start-page: 41
  year: 2018
  end-page: 52
  ident: CR29
  article-title: Characterization of the Fe-Co-1.5 V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)
  publication-title: Addit Manuf
– volume: 102
  start-page: 969
  issue: 1
  year: 2019
  end-page: 976
  ident: CR20
  article-title: Effects of deposition variables on molten pool temperature during laser engineered net shaping of Inconel 718 superalloy
  publication-title: Int J Adv Manuf Technol
– volume: 60
  start-page: 76
  year: 2019
  end-page: 84
  ident: CR36
  article-title: Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology
  publication-title: Precis Eng
– volume: 346
  start-page: 428
  year: 2015
  end-page: 437
  ident: CR1
  article-title: Additive manufacturing of Ti-Si-N ceramic coatings on titanium
  publication-title: Appl Surf Sci
– volume: 106
  start-page: 324
  year: 2015
  end-page: 337
  ident: CR39
  article-title: Electron microscopy study of direct laser deposited IN718
  publication-title: Mater Charact
– ident: CR38
– volume: 43
  start-page: 7768
  issue: 10
  year: 2017
  end-page: 7775
  ident: CR5
  article-title: Additive manufacturing of alumina using laser engineered net shaping: Effects of deposition variables
  publication-title: Ceram Int
– ident: CR13
– volume: 41
  start-page: 266
  year: 2016
  end-page: 276
  ident: CR45
  article-title: Online non-contact surface finish measurement in machining using graph theory-based image analysis
  publication-title: J Manuf Syst
– ident: CR34
– volume: 31
  start-page: 860
  issue: 4
  year: 2018
  end-page: 866
  ident: CR32
  article-title: Single track and single layer formation in selective laser melting of niobium solid solution alloy
  publication-title: Chin J Aeronaut
– ident: CR55
– volume: 67
  start-page: 93
  year: 2012
  end-page: 104
  ident: CR60
  article-title: An assessment of the effectiveness of a random forest classifier for land-cover classification
  publication-title: ISPRS J Photogramm Remote Sens
– volume: 45
  start-page: 579
  year: 2019
  end-page: 587
  ident: CR10
  article-title: Multiphysics modeling of phase transformation and microhardness evolution in laser direct deposited Ti6Al4V
  publication-title: J Manuf Process
– volume: 143
  start-page: 172
  year: 2018
  end-page: 196
  ident: CR7
  article-title: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges
  publication-title: Compos B Eng
– volume: 307
  start-page: 407
  year: 2016
  end-page: 417
  ident: CR31
  article-title: The effect of NiB additive on surface morphology and microstructure of 316L stainless steel single tracks and layers obtained by SLM
  publication-title: Surf Coat Technol
– ident: CR41
– volume: 20
  start-page: 126
  year: 2018
  end-page: 133
  ident: CR44
  publication-title: Internal surface measurement of metal powder bed fusion parts
– ident: CR62
– volume: 58
  start-page: 520
  year: 2014
  end-page: 536
  ident: CR25
  article-title: Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis
  publication-title: Measurement
– ident: 9608_CR16
  doi: 10.1007/978-3-319-71249-9_3
– volume: 84
  start-page: 443
  issue: 3
  year: 2014
  ident: 9608_CR40
  publication-title: Angle Orthod
  doi: 10.2319/051213-365.1
– volume: 112
  start-page: 485
  year: 2019
  ident: 9608_CR23
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.11.054
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 9608_CR61
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 106
  start-page: 87
  year: 2018
  ident: 9608_CR68
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2018.04.007
– volume: 58
  start-page: 520
  year: 2014
  ident: 9608_CR25
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.025
– volume: 124
  start-page: 143
  year: 2017
  ident: 9608_CR67
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.03.065
– volume: 57
  start-page: 555
  issue: 1
  year: 2008
  ident: 9608_CR46
  publication-title: CIRP Ann
  doi: 10.1016/j.cirp.2008.03.110
– ident: 9608_CR62
– volume: 119
  year: 2019
  ident: 9608_CR19
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2019.105592
– volume: 17
  start-page: 933
  issue: 4
  year: 2017
  ident: 9608_CR47
  publication-title: Sensors
  doi: 10.3390/s17040933
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 9608_CR63
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1206-1565
– volume: 193
  year: 2020
  ident: 9608_CR18
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2020.108762
– ident: 9608_CR66
– volume: 60
  start-page: 76
  year: 2019
  ident: 9608_CR36
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2019.06.004
– volume: 47
  start-page: 69
  year: 2018
  ident: 9608_CR11
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.04.001
– volume: 703
  start-page: 251
  year: 2017
  ident: 9608_CR22
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.07.071
– volume: 235
  start-page: 1930
  issue: 10
  year: 2021
  ident: 9608_CR9
  publication-title: Proc Inst Mech Eng C J Mech Eng Sci
  doi: 10.1177/0954406218813384
– volume: 42
  start-page: 167
  year: 2019
  ident: 9608_CR2
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.05.001
– volume: 13
  start-page: 1115
  issue: 5
  year: 2020
  ident: 9608_CR30
  publication-title: Materials
  doi: 10.3390/ma13051115
– volume: 45
  start-page: 131
  year: 2016
  ident: 9608_CR42
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2016.02.347
– volume: 53
  start-page: 16
  year: 2021
  ident: 9608_CR21
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2021.06.005
– volume: 81
  start-page: 465
  issue: 1
  year: 2015
  ident: 9608_CR24
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-7077-3
– volume: 45
  start-page: 579
  year: 2019
  ident: 9608_CR10
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.07.027
– volume: 21
  start-page: 41
  year: 2018
  ident: 9608_CR29
  publication-title: Addit Manuf
– volume: 27
  start-page: 334
  year: 2019
  ident: 9608_CR27
  publication-title: Addit Manuf
– volume: 142
  issue: 7
  year: 2020
  ident: 9608_CR14
  publication-title: J Mech Des
  doi: 10.1115/1.4045419
– ident: 9608_CR12
  doi: 10.1145/3097983.3098052
– volume: 52
  start-page: 249
  year: 2018
  ident: 9608_CR35
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.01.002
– volume: 7
  start-page: 750
  issue: 4
  year: 2017
  ident: 9608_CR52
  publication-title: IEEE Transactions on Big Data
  doi: 10.1109/TBDATA.2017.2717439
– volume: 41
  start-page: 266
  year: 2016
  ident: 9608_CR45
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2016.09.007
– volume: 48
  start-page: 770
  year: 2020
  ident: 9608_CR37
  publication-title: Procedia Manuf
  doi: 10.1016/j.promfg.2020.05.112
– volume: 14
  start-page: 412
  issue: 6
  year: 1998
  ident: 9608_CR48
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/BF01304620
– volume: 46
  start-page: 34
  year: 2016
  ident: 9608_CR58
  publication-title: Surface texture metrology for metal additive manufacturing: a review
– volume: -
  start-page: 1
  year: 2022
  ident: 9608_CR15
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-021-01879-9
– volume: 1
  start-page: 87
  year: 2014
  ident: 9608_CR69
  publication-title: Addit Manuf
– ident: 9608_CR13
– ident: 9608_CR56
  doi: 10.1007/978-3-642-15883-4_27
– ident: 9608_CR51
– volume: 23
  start-page: 1917
  issue: 6
  year: 2014
  ident: 9608_CR3
  publication-title: J Mater Eng Perform
  doi: 10.1007/s11665-014-0958-z
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 9608_CR59
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 19
  start-page: 163
  year: 2015
  ident: 9608_CR28
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2015.06.026
– volume: 102
  start-page: 969
  issue: 1
  year: 2019
  ident: 9608_CR20
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-018-03245-1
– ident: 9608_CR38
  doi: 10.1115/1.4037891
– volume: 307
  start-page: 407
  year: 2016
  ident: 9608_CR31
  publication-title: Surf Coat Technol
  doi: 10.1016/j.surfcoat.2016.09.019
– volume: 42
  start-page: 96
  year: 2019
  ident: 9608_CR8
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.04.020
– ident: 9608_CR64
– volume: 20
  start-page: 29
  issue: 1
  year: 2009
  ident: 9608_CR4
  publication-title: J Mater Sci - Mater Med
  doi: 10.1007/s10856-008-3478-2
– volume: 31
  start-page: 860
  issue: 4
  year: 2018
  ident: 9608_CR32
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2017.08.019
– volume: 106
  start-page: 324
  year: 2015
  ident: 9608_CR39
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2015.06.017
– volume: 346
  start-page: 428
  year: 2015
  ident: 9608_CR1
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2015.03.184
– volume: 27
  start-page: 461
  year: 2019
  ident: 9608_CR6
  publication-title: Addit Manuf
– ident: 9608_CR53
  doi: 10.1109/CVPR.2014.244
– volume: 57
  start-page: 1
  year: 2019
  ident: 9608_CR57
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2018.09.007
– volume: 143
  issue: 3
  year: 2021
  ident: 9608_CR26
  publication-title: J Mech Des
  doi: 10.1115/1.4049521
– volume: 46
  start-page: 34
  year: 2016
  ident: 9608_CR43
  publication-title: Precis Eng
  doi: 10.1016/j.precisioneng.2016.06.001
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 9608_CR65
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 67
  start-page: 93
  year: 2012
  ident: 9608_CR60
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: 9608_CR34
  doi: 10.1109/ASMC.2017.7969228
– volume: 59
  start-page: 675
  year: 2021
  ident: 9608_CR50
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2021.04.007
– volume: 43
  start-page: 7768
  issue: 10
  year: 2017
  ident: 9608_CR5
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.03.085
– ident: 9608_CR41
  doi: 10.1088/1757-899X/272/1/012017
– volume: 143
  start-page: 172
  year: 2018
  ident: 9608_CR7
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2018.02.012
– ident: 9608_CR55
  doi: 10.1561/9781601984616
– volume: 7
  start-page: 42
  issue: 1
  year: 2005
  ident: 9608_CR17
  publication-title: J Manuf Process
  doi: 10.1016/S1526-6125(05)70080-3
– ident: 9608_CR33
  doi: 10.1201/b11022
– ident: 9608_CR49
  doi: 10.1007/s10845-022-01933-0
– ident: 9608_CR54
  doi: 10.1017/CBO9780511804441
– volume: 20
  start-page: 126
  year: 2018
  ident: 9608_CR44
  publication-title: Internal surface measurement of metal powder bed fusion parts
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.3740845
Snippet Metal additive manufacturing (AM) has become popular in a large variety of applications due to its excellent capabilities of handling complex geometries and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 4643
SubjectTerms CAE) and Design
Computer-Aided Engineering (CAD
Engineering
Industrial and Production Engineering
Mechanical Engineering
Media Management
Original Article
Title Hybrid data-driven feature extraction-enabled surface modeling for metal additive manufacturing
URI https://link.springer.com/article/10.1007/s00170-022-09608-z
Volume 121
WOSCitedRecordID wos000824941100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9kYM3DTRttk2OIi57WsQXeytpHiC4Vdqu4P56M-lDF2RBob2lLZ1M5sHM9w1CF87LGMsCTiQTijA2sEB563Q5MIxq6tI3Uw-bSMZjPpmIuwYUVrbd7m1J0lvqDuzmqV4IdJ9D2M3JfBWtOXfH4TjePzy3WkRFApMwOy0LBYyf_9biiA2iurbV1Bpi6gFzLhnhcNx4A635_ZuL7muxdupd0nD7fz-zg7aaEBRf1zqzi1ZMvoc2fxAT7qN09AlILgz9o0QXYBGxNZ4DFDtrXtRoCGI88ErjclZYqQz2Y3XcC7CLhPHUuLgeQ78SWFQ8lfkMUBQeFnmAnoa3jzcj0oxiICoUtCJJGGUmlJG2WTLQHCiBYpeLBFGiAkvdnWguY8syrYWh3ASaKx6bRMAVxEF0iHr5W26OEJY0ktoFKtzlWizmNtOhZMAb6L5gY6H6iLYSTlXDUw7jMl7TjmHZCy91wku98NJ5H112z7zXLB1LV1-1m5I2J7Zcsvz4b8tP0Ebo9xWaBE9Rrypm5gytq4_qpSzOvap-AeVh3yg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46BfXBuzivefBNA02btcmjiGPiHKJT9ha6JgHBVWk3wf16c9KLDmSg0L6lLT05ORfO-b6D0Jn1Mtowj5OYiYQw1jJAeWt12dOMKmrTN10Mm4h6PT4YiPsSFJZX3e5VSdJZ6hrs5qheCHSfQ9jNyXQRLTHrsaCR7-HxudIiKiKYhFlrmS9g_Py3FgesFRS1rbLWEFIHmLPJCIfjxktoze_fnHVfs7VT55LaG__7mU20Xoag-LLQmS20oNNttPaDmHAHyc4nILkw9I8SlYFFxEY7DlBsrXlWoCGIdsArhfNJZuJEYzdWx74A20gYj7SN6zH0K4FFxaM4nQCKwsEid9FT-7p_1SHlKAaS-IKOSeQHQ-3HgTLDqKU4UAKFNhfxgijxDLV3pHgcGjZUSmjKtad4wkMdCbi80Av2UCN9S_U-wjENYmUDFW5zLRZyM1R-zIA30H7BhCJpIlpJWCYlTzmMy3iVNcOyE560wpNOeHLaROf1M-8FS8fc1RfVpsjyxOZzlh_8bfkpWun077qye9O7PUSrvttjaBg8Qo1xNtHHaDn5GL_k2YlT2y9jpeIM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNw5o2a5NHUcdEGQMv7K20TQKCq6PrBPfrzUkvbiADEdq3tKUnJ8k5nPN9H0IX5pRRmjmcREwkhLG2Bspb48uOYlRSk76pQmwi6PX4YCD6Myh-2-1elSQLTAOwNKV5ayR1qwa-WdoXAp3oEIJzMl1GKwxEgyBff3qtPIqKAFQxa49zBUjR_3i0x9peUecq6w4-teA5k5hwWHq8hNn8_s35o2y-jmqPp87W_39sG22WoSm-LnxpBy2pdBdtzBAW7qGw-wUILwx9pURmsFNirSw3KDa7fFagJIiygCyJx5NMR4nCVm7HvACbCBkPlYn3MfQxwU6Lh1E6AXSFhUvuo5fO3fNNl5QSDSRxBc1J4HqxciNP6jhoSw5UQb7JURwvSBxNzR1IHvmaxVIKRblyJE-4rwIBl-M73gFqpB-pOkQ4ol4kTQDDTQ7GfK5j6UYM-ATNF7QvkiailbXDpOQvBxmN97BmXrbGC43xQmu8cNpEl_Uzo4K9Y-Hoq2qCwnIljxcMP_rb8HO01r_thI_3vYdjtO7aKYY-whPUyLOJOkWryWf-Ns7OrAd_Awhj6vA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+data-driven+feature+extraction-enabled+surface+modeling+for+metal+additive+manufacturing&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Shi%2C+Zhangyue&rft.au=Mandal%2C+Soumya&rft.au=Harimkar%2C+Sandip&rft.au=Liu%2C+Chenang&rft.date=2022-08-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=121&rft.issue=7-8&rft.spage=4643&rft.epage=4662&rft_id=info:doi/10.1007%2Fs00170-022-09608-z&rft.externalDocID=10_1007_s00170_022_09608_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon