Improved Kernel Recursive Least Squares Algorithm based Online Prediction for Nonstationary Time Series

We present an improved kernel recursive least squares (KRLS) algorithm for the online prediction of nonstationary time series. In order to adaptively sparsify a selected kernel dictionary for the KRLS algorithm, the approximate linear dependency (ALD) criterion based KRLS algorithm is combined with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 27; s. 1
Hlavní autoři: Guo, Jinhua, Chen, Hao, Chen, Songhang
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present an improved kernel recursive least squares (KRLS) algorithm for the online prediction of nonstationary time series. In order to adaptively sparsify a selected kernel dictionary for the KRLS algorithm, the approximate linear dependency (ALD) criterion based KRLS algorithm is combined with the quantized kernel recursive least squares algorithm to provide an initial framework. In order to sufficiently track the strongly changeable dynamic characteristics due to nonstationarity, a forgetting factor is further inserted into the proposed combined algorithm. It is shown that our proposed algorithm, referred to as the FFIKRLS algorithm, provides a clearly compatible algorithm structure and can be improved by the existing modeling techniques from both mapping and weights updating perspectives. Numerical simulations using benchmark Lorenz time series in comparison with existing methods have demonstrated that the proposed algorithm has superior performance in terms of both predictive accuracy and kernel dictionary size.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2020.3011892