MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation

Head pose estimation suffers from several problems, including low pose tolerance under different disturbances and ambiguity arising from common head pose representation. In this study, a robust three-branch model with triplet module and matrix Fisher distribution module is proposed to address these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia Jg. 24; S. 2449 - 2460
Hauptverfasser: Liu, Hai, Fang, Shuai, Zhang, Zhaoli, Li, Duantengchuan, Lin, Ke, Wang, Jiazhang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1520-9210, 1941-0077
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Head pose estimation suffers from several problems, including low pose tolerance under different disturbances and ambiguity arising from common head pose representation. In this study, a robust three-branch model with triplet module and matrix Fisher distribution module is proposed to address these problems. Based on metric learning, the triplet module employs triplet architecture and triplet loss. It is implemented to maximize the distance between embeddings with different pose pairs and minimize the distance between embeddings with same pose pairs. It can learn a highly discriminate and robust embedding related to head pose. Moreover, the rotation matrix instead of Euler angle and unit quaternion is utilized to represent head pose. An exponential probability density model based on the rotation matrix (referred to as the matrix Fisher distribution) is developed to model head rotation uncertainty. The matrix Fisher distribution can further analyze the head pose, and its maximum likelihood obtained using singular value decomposition provides enhanced accuracy. Extensive experiments executed over AFLW2000 and BIWI datasets demonstrate that the proposed model achieves state-of-the-art performance in comparison with traditional methods.
AbstractList Head pose estimation suffers from several problems, including low pose tolerance under different disturbances and ambiguity arising from common head pose representation. In this study, a robust three-branch model with triplet module and matrix Fisher distribution module is proposed to address these problems. Based on metric learning, the triplet module employs triplet architecture and triplet loss. It is implemented to maximize the distance between embeddings with different pose pairs and minimize the distance between embeddings with same pose pairs. It can learn a highly discriminate and robust embedding related to head pose. Moreover, the rotation matrix instead of Euler angle and unit quaternion is utilized to represent head pose. An exponential probability density model based on the rotation matrix (referred to as the matrix Fisher distribution) is developed to model head rotation uncertainty. The matrix Fisher distribution can further analyze the head pose, and its maximum likelihood obtained using singular value decomposition provides enhanced accuracy. Extensive experiments executed over AFLW2000 and BIWI datasets demonstrate that the proposed model achieves state-of-the-art performance in comparison with traditional methods.
Author Zhang, Zhaoli
Fang, Shuai
Lin, Ke
Liu, Hai
Li, Duantengchuan
Wang, Jiazhang
Author_xml – sequence: 1
  givenname: Hai
  orcidid: 0000-0002-6146-5464
  surname: Liu
  fullname: Liu, Hai
  email: hailiu0204@mail.ccnu.edu.cn
  organization: National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China
– sequence: 2
  givenname: Shuai
  orcidid: 0000-0002-1132-5391
  surname: Fang
  fullname: Fang, Shuai
  email: fibreggs@gmail.com
  organization: National Engineering Laboratory For Educational Big Data, Central China Normal University, Wuhan, China
– sequence: 3
  givenname: Zhaoli
  orcidid: 0000-0002-0844-0719
  surname: Zhang
  fullname: Zhang, Zhaoli
  email: zl.zhang@mail.ccnu.edu.cn
  organization: National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China
– sequence: 4
  givenname: Duantengchuan
  orcidid: 0000-0003-2902-7365
  surname: Li
  fullname: Li, Duantengchuan
  email: dtclee1222@gmail.com
  organization: National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China
– sequence: 5
  givenname: Ke
  orcidid: 0000-0002-3429-5877
  surname: Lin
  fullname: Lin, Ke
  email: sheldon.chris.lin@gmail.com
  organization: Control Science and Engineering, Harbin Institute of Technology, Shenzhen, China
– sequence: 6
  givenname: Jiazhang
  surname: Wang
  fullname: Wang, Jiazhang
  email: jiazhang.wang@u.northwestern.edu
  organization: Northwestern University, Evanston, IL, USA
BookMark eNp9kE1PwzAMhiM0JLbBHYlLJM4dTtokDTe0D4bEYBI7U6VtIjKVZiQZgn9P9yEOHDjZlv34td8B6rWu1QhdEhgRAvJmtViMKFAySiEnuUhPUJ_IjCQAQvS6nFFIJCVwhgYhrAFIxkD00etiNnnS8RaPXdOo0nkV7afGSxd0wEvtK72J1rVYtTVeqOjtF57Z8KY9ntjQleV23zbO47lW9R7E0xDtu9o1ztGpUU3QF8c4RC-z6Wo8Tx6f7x_Gd49JRSWJCTdG5oaD0iWnwkBeG57WNQgCJi-5oampWcaUyHJRipIwZiqV1zmrKlPJdIiuD1s33n1sdYjF2m192wkWlHMKkhHCuyk4TFXeheC1KTa-O9N_FwSKnYdF52Gx87A4etgh_A9S2bh_LHplm__AqwNotda_OjJLmUxl-gPQBYDv
CODEN ITMUF8
CitedBy_id crossref_primary_10_1016_j_dib_2025_111331
crossref_primary_10_3390_s24248155
crossref_primary_10_1016_j_eswa_2024_124425
crossref_primary_10_1049_ipr2_13142
crossref_primary_10_1007_s00371_023_02781_6
crossref_primary_10_1007_s10489_023_04598_1
crossref_primary_10_1007_s10489_025_06509_y
crossref_primary_10_1007_s10115_022_01714_4
crossref_primary_10_1016_j_isci_2025_112155
crossref_primary_10_3390_s23115133
crossref_primary_10_1016_j_compbiomed_2024_108822
crossref_primary_10_1016_j_eswa_2023_119511
crossref_primary_10_1016_j_heliyon_2023_e21361
crossref_primary_10_3390_app13010526
crossref_primary_10_1016_j_infrared_2023_104700
crossref_primary_10_3390_app12083933
crossref_primary_10_1007_s10489_023_04658_6
crossref_primary_10_1016_j_infrared_2022_104146
crossref_primary_10_1007_s10489_023_04734_x
crossref_primary_10_1016_j_eswa_2022_118943
crossref_primary_10_1007_s10489_023_04714_1
crossref_primary_10_1016_j_patrec_2024_08_009
crossref_primary_10_1109_TIM_2023_3341142
crossref_primary_10_1007_s10489_023_04454_2
crossref_primary_10_1109_TIP_2023_3331309
crossref_primary_10_1016_j_heliyon_2024_e35938
crossref_primary_10_1007_s10115_022_01740_2
crossref_primary_10_1007_s10489_023_04795_y
crossref_primary_10_1002_aisy_202400159
crossref_primary_10_1016_j_heliyon_2023_e16855
crossref_primary_10_3390_s22186759
crossref_primary_10_1007_s10489_022_03320_x
crossref_primary_10_3390_s22165932
crossref_primary_10_3390_electronics13040774
crossref_primary_10_3390_s23177626
crossref_primary_10_1016_j_infrared_2022_104099
crossref_primary_10_1016_j_patcog_2024_110263
crossref_primary_10_1109_TMM_2023_3238548
crossref_primary_10_3390_rs15020443
crossref_primary_10_1007_s10489_023_04587_4
crossref_primary_10_1007_s10489_023_04963_0
crossref_primary_10_1016_j_eswa_2024_124659
crossref_primary_10_1109_TIP_2024_3372457
crossref_primary_10_1016_j_ijleo_2022_169986
crossref_primary_10_3390_app12157782
crossref_primary_10_1007_s10489_023_04689_z
crossref_primary_10_1007_s10489_023_04695_1
crossref_primary_10_3390_electronics11142114
crossref_primary_10_1364_AO_532544
crossref_primary_10_1371_journal_pone_0284687
crossref_primary_10_1007_s10462_022_10210_8
crossref_primary_10_1016_j_engappai_2024_109070
crossref_primary_10_3390_s23135824
crossref_primary_10_3390_s24082589
crossref_primary_10_1139_tcsme_2024_0167
crossref_primary_10_1016_j_csi_2024_103921
crossref_primary_10_1007_s10489_023_04726_x
crossref_primary_10_1109_JSEN_2022_3168863
crossref_primary_10_3390_electronics12102265
crossref_primary_10_1016_j_cviu_2024_103999
crossref_primary_10_1016_j_measurement_2024_115137
crossref_primary_10_1016_j_infrared_2023_104723
crossref_primary_10_1016_j_infrared_2021_104005
crossref_primary_10_1016_j_patcog_2023_110119
crossref_primary_10_1016_j_neucom_2023_01_079
crossref_primary_10_1109_ACCESS_2023_3270285
crossref_primary_10_1016_j_eswa_2023_121929
crossref_primary_10_1016_j_physbeh_2024_114561
crossref_primary_10_1007_s10489_023_04687_1
crossref_primary_10_1016_j_infrared_2023_104719
crossref_primary_10_1016_j_mtcomm_2024_109329
crossref_primary_10_2478_ijanmc_2024_0028
crossref_primary_10_3390_app12115557
crossref_primary_10_1007_s10489_021_03017_7
crossref_primary_10_1007_s10489_021_03150_3
crossref_primary_10_1016_j_displa_2024_102675
crossref_primary_10_3390_s22249835
crossref_primary_10_1016_j_image_2024_117192
crossref_primary_10_1007_s10489_022_03382_x
crossref_primary_10_1016_j_neunet_2022_12_021
crossref_primary_10_1007_s10489_022_03848_y
crossref_primary_10_32604_cmes_2023_024189
crossref_primary_10_1109_TMM_2022_3233251
crossref_primary_10_1016_j_infrared_2022_104310
crossref_primary_10_1007_s10489_023_04731_0
crossref_primary_10_1016_j_infrared_2023_104850
crossref_primary_10_1007_s10462_024_10936_7
crossref_primary_10_1016_j_ecoinf_2024_102925
crossref_primary_10_3390_math11092024
crossref_primary_10_1016_j_heliyon_2024_e35929
crossref_primary_10_1007_s10489_023_04740_z
crossref_primary_10_1007_s10489_023_04633_1
crossref_primary_10_3390_app12073544
crossref_primary_10_1007_s10489_022_03506_3
crossref_primary_10_3390_electronics10131581
crossref_primary_10_1007_s10489_023_04614_4
crossref_primary_10_1016_j_eswa_2024_125799
crossref_primary_10_1007_s10489_022_04093_z
crossref_primary_10_1016_j_image_2023_117009
crossref_primary_10_1016_j_infrared_2022_104348
crossref_primary_10_1109_ACCESS_2024_3487414
crossref_primary_10_1007_s10489_023_05140_z
crossref_primary_10_1007_s00500_025_10692_y
crossref_primary_10_1109_THMS_2024_3351138
crossref_primary_10_3390_app13052922
crossref_primary_10_1007_s10489_024_05343_y
crossref_primary_10_1016_j_neucom_2024_129033
crossref_primary_10_1109_TIP_2024_3378180
crossref_primary_10_1016_j_heliyon_2024_e36823
crossref_primary_10_1007_s44443_025_00034_1
crossref_primary_10_3390_electronics11203403
crossref_primary_10_1007_s10489_023_04548_x
crossref_primary_10_1007_s10489_023_04870_4
crossref_primary_10_1007_s10489_021_02967_2
crossref_primary_10_1016_j_neucom_2025_130490
crossref_primary_10_1016_j_infrared_2022_104297
crossref_primary_10_1016_j_patcog_2025_111536
crossref_primary_10_1109_JSEN_2021_3122258
crossref_primary_10_1007_s10489_023_04589_2
crossref_primary_10_1109_TII_2021_3123546
crossref_primary_10_1016_j_infrared_2022_104457
crossref_primary_10_1007_s10489_023_04750_x
crossref_primary_10_1007_s10489_022_03781_0
crossref_primary_10_1007_s11633_023_1438_4
crossref_primary_10_1016_j_measurement_2024_114939
crossref_primary_10_1007_s10489_022_03431_5
crossref_primary_10_3390_bdcc7010037
crossref_primary_10_1016_j_asoc_2024_112011
crossref_primary_10_1109_LGRS_2022_3167401
crossref_primary_10_3390_s22134663
crossref_primary_10_1016_j_tafmec_2025_105197
crossref_primary_10_3390_en17020349
crossref_primary_10_1016_j_asoc_2024_112125
crossref_primary_10_3390_electronics11142278
crossref_primary_10_3390_app12115424
crossref_primary_10_3390_s23052613
crossref_primary_10_1016_j_cja_2023_12_028
crossref_primary_10_1016_j_neucom_2023_126270
crossref_primary_10_1007_s10489_023_05076_4
crossref_primary_10_1016_j_infrared_2023_104909
crossref_primary_10_3390_app13116422
crossref_primary_10_3390_electronics12051194
crossref_primary_10_1016_j_infrared_2022_104482
crossref_primary_10_1016_j_ipm_2024_103831
crossref_primary_10_3389_fneur_2025_1596408
crossref_primary_10_3390_app12189060
crossref_primary_10_3390_s22082929
crossref_primary_10_1016_j_ecoinf_2024_102794
crossref_primary_10_1016_j_image_2022_116895
crossref_primary_10_1007_s10489_023_04760_9
crossref_primary_10_1007_s10489_022_03623_z
crossref_primary_10_1007_s10489_023_04952_3
crossref_primary_10_1007_s10489_022_03958_7
crossref_primary_10_1007_s10489_023_04499_3
crossref_primary_10_1016_j_asoc_2024_112119
crossref_primary_10_1109_LSP_2021_3138351
crossref_primary_10_1007_s13748_024_00329_w
crossref_primary_10_1007_s00500_021_06622_3
crossref_primary_10_1016_j_agwat_2024_108901
crossref_primary_10_1007_s10489_022_03931_4
crossref_primary_10_1007_s10489_024_05516_9
crossref_primary_10_1007_s10489_023_05023_3
crossref_primary_10_3390_signals5040040
crossref_primary_10_1109_LGRS_2023_3274225
crossref_primary_10_1016_j_infrared_2022_104230
crossref_primary_10_1007_s10489_022_03530_3
crossref_primary_10_3390_s22197123
crossref_primary_10_1007_s10489_022_03497_1
crossref_primary_10_1109_ACCESS_2025_3561506
crossref_primary_10_3390_electronics12061360
crossref_primary_10_1007_s10489_022_03924_3
crossref_primary_10_1007_s13042_023_01933_3
crossref_primary_10_3390_sci5010010
crossref_primary_10_1016_j_ijleo_2023_170892
crossref_primary_10_1016_j_neucom_2022_07_051
crossref_primary_10_1016_j_neucom_2025_130623
crossref_primary_10_3390_s24113342
crossref_primary_10_1080_10494820_2023_2205898
crossref_primary_10_3390_e24070974
crossref_primary_10_3390_electronics13234629
Cites_doi 10.3390/sym11091066
10.1007/978-3-030-01240-3_33
10.1007/978-3-319-24261-3_7
10.1093/biomet/59.3.665
10.1109/CVPR.2018.00045
10.1109/CVPR.2017.167
10.1109/CVPR.2009.5206848
10.1016/j.imavis.2019.11.005
10.1109/ICCV.2015.416
10.1109/CVPR.2016.23
10.1109/CVPR.2019.00118
10.1002/SERIES1345
10.1016/j.patcog.2020.107316
10.1109/ICCVW.2011.6130513
10.1109/IROS.2004.1389771
10.1109/FG.2017.149
10.1109/CVPR.2013.446
10.1609/aaai.v34i07.6974
10.1007/978-3-030-01261-8_44
10.1109/CVPR.2015.7298682
10.1109/CVPR.2005.202
10.1109/TAC.2018.2797162
10.1109/TMM.2010.2051874
10.1007/978-3-642-23123-0_11
10.1016/j.neucom.2020.05.010
10.1111/j.2517-6161.1977.tb01610.x
10.1007/s11263-012-0549-0
10.1109/TMM.2015.2482819
10.1109/TMM.2017.2771396
10.1109/ROBOT.2009.5152855
10.1109/CVPR.2019.00589
10.23919/ACC45564.2020.9147703
10.1109/CVPRW.2018.00281
10.1007/978-0-387-21540-2
10.1561/0600000001
10.1109/TPAMI.2020.2983935
10.1109/TPAMI.2017.2781233
10.1109/TPAMI.2021.3054824
10.1109/ICCV.2017.74
10.1109/ICCVW.2013.59
10.1109/TMM.2018.2866770
10.1109/CVPR.2014.241
10.1109/CVPR.2006.100
10.1109/LSP.2016.2603342
10.1109/CVPR42600.2020.01367
10.1109/ICCV.2019.00380
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2021.3081873
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 2460
ExternalDocumentID 10_1109_TMM_2021_3081873
9435939
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62011530436; 62077020; 62005092; 61875068
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: CCNU20ZT017; CCNU2020ZN008
  funderid: 10.13039/501100012226
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-6ff98f60aeb627f08df63dd0710f8b6f23fd545a7487b7b155fca8d85ccfc93
IEDL.DBID RIE
ISICitedReferencesCount 165
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793839600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Sun Nov 09 08:28:36 EST 2025
Tue Nov 18 21:39:56 EST 2025
Sat Nov 29 03:10:07 EST 2025
Wed Aug 27 02:37:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-6ff98f60aeb627f08df63dd0710f8b6f23fd545a7487b7b155fca8d85ccfc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0844-0719
0000-0002-6146-5464
0000-0002-1132-5391
0000-0003-2902-7365
0000-0002-3429-5877
PQID 2662095116
PQPubID 75737
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TMM_2021_3081873
crossref_primary_10_1109_TMM_2021_3081873
proquest_journals_2662095116
ieee_primary_9435939
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
ref11
ref10
Chikuse (ref14) 2003
ref17
ref16
ref19
ref18
Tan (ref43) 2019
Bulat (ref5) 2017
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
Ying (ref51) 2019
ref33
ref32
ref2
ref1
Martinez (ref49) 2014
ref39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Hermans (ref38) 2017
ref28
ref27
ref29
Mohlin (ref41) 2020
References_xml – ident: ref31
  doi: 10.3390/sym11091066
– ident: ref39
  doi: 10.1007/978-3-030-01240-3_33
– ident: ref36
  doi: 10.1007/978-3-319-24261-3_7
– ident: ref15
  doi: 10.1093/biomet/59.3.665
– ident: ref18
  doi: 10.1109/CVPR.2018.00045
– ident: ref30
  doi: 10.1109/CVPR.2017.167
– ident: ref48
  doi: 10.1109/CVPR.2009.5206848
– ident: ref24
  doi: 10.1016/j.imavis.2019.11.005
– ident: ref29
  doi: 10.1109/ICCV.2015.416
– ident: ref23
  doi: 10.1109/CVPR.2016.23
– ident: ref8
  doi: 10.1109/CVPR.2019.00118
– ident: ref13
  doi: 10.1002/SERIES1345
– ident: ref20
  doi: 10.1016/j.patcog.2020.107316
– ident: ref46
  doi: 10.1109/ICCVW.2011.6130513
– ident: ref3
  doi: 10.1109/IROS.2004.1389771
– ident: ref21
  doi: 10.1109/FG.2017.149
– ident: ref17
  doi: 10.1109/CVPR.2013.446
– ident: ref26
  doi: 10.1609/aaai.v34i07.6974
– ident: ref2
  doi: 10.1007/978-3-030-01261-8_44
– ident: ref32
  doi: 10.1109/CVPR.2015.7298682
– ident: ref35
  doi: 10.1109/CVPR.2005.202
– ident: ref40
  doi: 10.1109/TAC.2018.2797162
– ident: ref1
  doi: 10.1109/TMM.2010.2051874
– ident: ref27
  doi: 10.1007/978-3-642-23123-0_11
– start-page: 7105
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref51
  article-title: Nas-bench-101: Towards reproducible neural architecture search
– ident: ref25
  doi: 10.1016/j.neucom.2020.05.010
– ident: ref16
  doi: 10.1111/j.2517-6161.1977.tb01610.x
– ident: ref45
  doi: 10.1007/s11263-012-0549-0
– ident: ref28
  doi: 10.1109/TMM.2015.2482819
– ident: ref4
  doi: 10.1109/TMM.2017.2771396
– ident: ref12
  doi: 10.1109/ROBOT.2009.5152855
– ident: ref11
  doi: 10.1109/CVPR.2019.00589
– ident: ref42
  doi: 10.23919/ACC45564.2020.9147703
– start-page: 1021
  volume-title: Proc. Int. Conf. Comput. Vis.
  year: 2017
  ident: ref5
– year: 2017
  ident: ref38
  article-title: In defense of the triplet loss for person re-identification
– ident: ref7
  doi: 10.1109/CVPRW.2018.00281
– volume-title: Statistics on Special Manifolds
  year: 2003
  ident: ref14
  doi: 10.1007/978-0-387-21540-2
– ident: ref10
  doi: 10.1561/0600000001
– ident: ref19
  doi: 10.1109/TPAMI.2020.2983935
– ident: ref22
  doi: 10.1109/TPAMI.2017.2781233
– ident: ref52
  doi: 10.1109/TPAMI.2021.3054824
– ident: ref50
  doi: 10.1109/ICCV.2017.74
– ident: ref44
  doi: 10.1109/ICCVW.2013.59
– ident: ref9
  doi: 10.1109/TMM.2018.2866770
– start-page: 641
  volume-title: Proc. Int. Conf. 3D Vis.
  year: 2014
  ident: ref49
  article-title: Real time head model creation and head pose estimation on consumer depth cameras
– start-page: 4884
  volume-title: Neural Inf. Process. Syst.
  year: 2020
  ident: ref41
  article-title: Probabilistic orientation estimation with matrix fisher distributions
– ident: ref6
  doi: 10.1109/CVPR.2014.241
– start-page: 6105
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2019
  ident: ref43
  article-title: Rethinking model scaling for convolutional neural networks
– ident: ref37
  doi: 10.1109/CVPR.2006.100
– ident: ref47
  doi: 10.1109/LSP.2016.2603342
– ident: ref33
  doi: 10.1109/CVPR42600.2020.01367
– ident: ref34
  doi: 10.1109/ICCV.2019.00380
SSID ssj0014507
Score 2.674637
Snippet Head pose estimation suffers from several problems, including low pose tolerance under different disturbances and ambiguity arising from common head pose...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2449
SubjectTerms Euler angles
Feature extraction
Head
Head movement
Head pose estimation
Matrix Fisher distribution
Measurement
Metric learning
Modules
Pose estimation
Quaternions
Robustness
Rotation matrix
Singular value decomposition
Solid modeling
Three-dimensional displays
Triplet loss
Uncertainty
Title MFDNet: Collaborative Poses Perception and Matrix Fisher Distribution for Head Pose Estimation
URI https://ieeexplore.ieee.org/document/9435939
https://www.proquest.com/docview/2662095116
Volume 24
WOSCitedRecordID wos000793839600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCD9Yn1RQ5eBLdN95FsvIm2eLClYA89uWTzAEFaabfiz3eS3a6KInjbQ5Jd9ksy32Qy3wBcSIscROkwoHmsg7grdZDHKQ2QKvBYMYXLy-vMPvDhMJ1MxGgNrupcGGOMv3xm2u7Rx_L1TC3dUVlHoG0XkWhAg3NW5mrVEYM48anRaI7wRejHrEKSVHTGgwE6gmG3HTn9Nh59M0G-psqPjdhbl37zf9-1A9sViyQ3Jey7sGame9BcVWgg1YLdg60vcoP78DTo3w1NcU1uP8F_M2Q0W5gFGdU3XIicajJw0v3vpKyMTu6cvG5VGYsgzSX3ODV8R9LDPaJMfzyAx35vfHsfVPUVAhWKbhEwa0VqGZUmZyG3NNWWRVo70mHTnNkwshoJluTo1OQ8R-ZhlUx1mihllYgOYX06m5ojICYRSWwpS3G8mEU0Z0JyyRIpcxpJzlvQWf3wTFXS464CxkvmXRAqMoQocxBlFUQtuKx7vJayG3-03XeQ1O0qNFpwusI0q9blIkM6EjpS2WXHv_c6gc3QJTj4Q5ZTWC_mS3MGG-qteF7Mz_2U-wCza9OI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xWAk4AAuLKE8fuCBtqJs4dswNAVURTVWJHjht5PghrYRaRAvi5zN20sBqERK3HGwnymd7vvF4vgE4UQ45iDZxREtmItZRJipZRiOkCoJprnF5BZ3ZvhgMsvt7OVyA300ujLU2XD6zZ_4xxPLNRD_7o7K2RNsuE7kIyyljMa2ytZqYAUtDcjQaJHwVejLzoCSV7VGeoysYd84Sr-Amkn-MUKiq8t9WHOxLd-N7X7YJ6zWPJBcV8D9hwY63YGNeo4HUS3YL1j4IDm7Dn7x7NbCzc3L5Dv-LJcPJ1E7JsLnjQtTYkNyL97-SqjY6ufICu3VtLIJEl_RwcoSO5Bp3iSoB8hfcda9Hl72orrAQ6Vh2ZhF3TmaOU2VLHgtHM-N4YoynHS4ruYsTZ5BiKYFuTSlK5B5Oq8xkqdZOy2QHlsaTsd0FYlOZMkd5huMxntCSSyUUT5UqaaKEaEF7_sMLXYuP-xoYD0VwQqgsEKLCQ1TUELXgtOnxWAlvfNF220PStKvRaMHBHNOiXpnTAglJ7Gllh-993usYVnqjvF_0bwa3-7Aa-3SHcORyAEuzp2d7CD_0y-zv9OkoTL833CvWzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFDNet%3A+Collaborative+Poses+Perception+and+Matrix+Fisher+Distribution+for+Head+Pose+Estimation&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Liu%2C+Hai&rft.au=Fang%2C+Shuai&rft.au=Zhang%2C+Zhaoli&rft.au=Li%2C+Duantengchuan&rft.date=2022&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=24&rft.spage=2449&rft.epage=2460&rft_id=info:doi/10.1109%2FTMM.2021.3081873&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2021_3081873
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon