Neural Network Detection of Data Sequences in Communication Systems

We consider detection based on deep learning, and show it is possible to train detectors that perform well without any knowledge of the underlying channel models. Moreover, when the channel model is known, we demonstrate that it is possible to train detectors that do not require channel state inform...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 66; číslo 21; s. 5663 - 5678
Hlavní autori: Farsad, Nariman, Goldsmith, Andrea
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider detection based on deep learning, and show it is possible to train detectors that perform well without any knowledge of the underlying channel models. Moreover, when the channel model is known, we demonstrate that it is possible to train detectors that do not require channel state information (CSI). In particular, a technique we call a sliding bidirectional recurrent neural network (SBRNN) is proposed for detection where, after training, the detector estimates the data in real time as the signal stream arrives at the receiver. We evaluate this algorithm, as well as other neural network (NN) architectures, using the Poisson channel model, which is applicable to both optical and molecular communication systems. In addition, we also evaluate the performance of this detection method applied to data sent over a molecular communication platform, where the channel model is difficult to model analytically. We show that SBRNN is computationally efficient, and can perform detection under various channel conditions without knowing the underlying channel model. We also demonstrate that the bit error rate performance of the proposed SBRNN detector is better than that of a Viterbi detector with imperfect CSI as well as that of other NN detectors that have been previously proposed. Finally, we show that the SBRNN can perform well in rapidly changing channels, where the coherence time is on the order of a single symbol duration.
AbstractList We consider detection based on deep learning, and show it is possible to train detectors that perform well without any knowledge of the underlying channel models. Moreover, when the channel model is known, we demonstrate that it is possible to train detectors that do not require channel state information (CSI). In particular, a technique we call a sliding bidirectional recurrent neural network (SBRNN) is proposed for detection where, after training, the detector estimates the data in real time as the signal stream arrives at the receiver. We evaluate this algorithm, as well as other neural network (NN) architectures, using the Poisson channel model, which is applicable to both optical and molecular communication systems. In addition, we also evaluate the performance of this detection method applied to data sent over a molecular communication platform, where the channel model is difficult to model analytically. We show that SBRNN is computationally efficient, and can perform detection under various channel conditions without knowing the underlying channel model. We also demonstrate that the bit error rate performance of the proposed SBRNN detector is better than that of a Viterbi detector with imperfect CSI as well as that of other NN detectors that have been previously proposed. Finally, we show that the SBRNN can perform well in rapidly changing channels, where the coherence time is on the order of a single symbol duration.
Author Goldsmith, Andrea
Farsad, Nariman
Author_xml – sequence: 1
  givenname: Nariman
  surname: Farsad
  fullname: Farsad, Nariman
  email: nfarsad@stanford.edu
  organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
– sequence: 2
  givenname: Andrea
  surname: Goldsmith
  fullname: Goldsmith, Andrea
  email: andrea@wsl.stanford.edu
  organization: Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA
BookMark eNp9kD1PwzAQhi0EEm1hR2KJxJzic2wnHlHKl1QVpHZgi-z0LKU0cbFdof570g8xMDC9NzzP3ekdkvPOdUjIDdAxAFX3i_n7mFEoxqyQRcbYGRmA4pBSnsvzfqYiS0WRf1ySYQgrSoFzJQeknOHW63Uyw_jt_GcywYh1bFyXOJtMdNTJHL-22NUYkqZLSte2266p9QGZ70LENlyRC6vXAa9POSKLp8dF-ZJO355fy4dpWjMFMZWWWqM4r5daIYhcsKwPI41iRlIrcjC5ZFRYCaiNVNoqY4BpKpaGMpWNyN1x7ca7_qUQq5Xb-q6_WDGAHIqcFqyn5JGqvQvBo63qJh7ejV436wpote-r6vuq9n1Vp756kf4RN75ptd_9p9welQYRf_GCC54xkf0AZhB3RQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LWC_2024_3402398
crossref_primary_10_3390_s21072414
crossref_primary_10_1109_ACCESS_2019_2930317
crossref_primary_10_3390_app10134622
crossref_primary_10_1109_LCOMM_2022_3193644
crossref_primary_10_1109_TVT_2022_3162887
crossref_primary_10_1109_JIOT_2025_3534166
crossref_primary_10_1109_JSEN_2023_3304971
crossref_primary_10_1109_JSAC_2020_3036954
crossref_primary_10_1109_LWC_2024_3387991
crossref_primary_10_2478_amns_2025_0445
crossref_primary_10_1109_TMBMC_2023_3278532
crossref_primary_10_1016_j_optcom_2019_03_013
crossref_primary_10_1109_COMST_2021_3066905
crossref_primary_10_1109_TCOMM_2021_3114682
crossref_primary_10_1109_LSP_2019_2953673
crossref_primary_10_1109_TMBMC_2020_3003532
crossref_primary_10_1109_ACCESS_2019_2929444
crossref_primary_10_1109_TWC_2020_3032663
crossref_primary_10_1109_MNANO_2023_3262377
crossref_primary_10_1109_TWC_2019_2924424
crossref_primary_10_1109_TAES_2021_3054073
crossref_primary_10_1016_j_dsp_2021_103086
crossref_primary_10_1121_10_0005474
crossref_primary_10_1134_S1063785019070241
crossref_primary_10_1109_TSP_2022_3140926
crossref_primary_10_1109_JSAC_2020_3036964
crossref_primary_10_1109_TMBMC_2025_3546503
crossref_primary_10_1109_JSAC_2021_3087252
crossref_primary_10_1109_TMBMC_2019_2926722
crossref_primary_10_1109_ACCESS_2025_3573096
crossref_primary_10_1109_LCOMM_2021_3082708
crossref_primary_10_1049_cmu2_12618
crossref_primary_10_1109_MWC_001_2200587
crossref_primary_10_1109_LCOMM_2020_3018260
crossref_primary_10_1016_j_comnet_2024_110233
crossref_primary_10_1109_JLT_2020_2994576
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_TWC_2021_3123220
crossref_primary_10_1109_TMBMC_2024_3360341
crossref_primary_10_1109_TCCN_2019_2943455
crossref_primary_10_1109_TVT_2021_3064868
crossref_primary_10_1109_ACCESS_2020_3010896
crossref_primary_10_1109_TSP_2021_3071210
crossref_primary_10_1109_LCOMM_2020_3011560
crossref_primary_10_1109_LCOMM_2022_3219382
crossref_primary_10_1109_JIOT_2023_3326142
crossref_primary_10_1371_journal_pone_0242361
crossref_primary_10_1109_TCOMM_2023_3321735
crossref_primary_10_1109_TSP_2022_3229947
crossref_primary_10_1016_j_phycom_2024_102503
crossref_primary_10_1109_JLT_2021_3102064
crossref_primary_10_1109_ACCESS_2022_3218802
crossref_primary_10_1155_2022_8992478
crossref_primary_10_1109_ACCESS_2024_3519310
crossref_primary_10_1016_j_phycom_2023_102222
crossref_primary_10_1038_s41598_021_98609_1
crossref_primary_10_1063_5_0067795
crossref_primary_10_1109_ACCESS_2020_3025597
crossref_primary_10_1109_JPROC_2019_2957798
crossref_primary_10_1109_TWC_2024_3367179
crossref_primary_10_1109_TNB_2020_3014958
crossref_primary_10_1109_TMBMC_2020_3035383
crossref_primary_10_1109_TNNLS_2023_3291702
crossref_primary_10_1007_s13540_025_00444_y
crossref_primary_10_1109_TSP_2024_3510623
crossref_primary_10_1109_LCOMM_2020_2968319
crossref_primary_10_1109_JSAC_2020_3041377
crossref_primary_10_1109_TMBMC_2025_3546208
crossref_primary_10_1109_JSTSP_2022_3144020
crossref_primary_10_1109_ACCESS_2019_2937982
crossref_primary_10_1109_LCOMM_2024_3381600
crossref_primary_10_1109_TMBMC_2024_3412669
crossref_primary_10_1007_s00034_022_01968_x
crossref_primary_10_1109_LCOMM_2021_3093651
crossref_primary_10_1109_LWC_2025_3554889
crossref_primary_10_1109_TII_2020_3015241
crossref_primary_10_1016_j_neunet_2023_05_005
crossref_primary_10_1109_TCCN_2022_3225790
crossref_primary_10_1007_s11760_025_04392_1
crossref_primary_10_1109_TWC_2022_3155945
crossref_primary_10_1109_COMST_2019_2935810
crossref_primary_10_1109_JPHOT_2020_3036464
crossref_primary_10_1109_TCCN_2018_2881442
crossref_primary_10_1109_TCOMM_2024_3394039
crossref_primary_10_1186_s13677_020_00168_9
crossref_primary_10_1109_TSP_2019_2899805
crossref_primary_10_1007_s11276_025_03985_5
crossref_primary_10_1109_LWC_2021_3079522
crossref_primary_10_1109_TCCN_2023_3279260
crossref_primary_10_1016_j_yofte_2024_104069
crossref_primary_10_1364_AO_386509
crossref_primary_10_1109_LCOMM_2021_3136508
crossref_primary_10_1111_exsy_13211
crossref_primary_10_1109_TVT_2021_3111081
crossref_primary_10_1109_TSIPI_2023_3335330
crossref_primary_10_1109_MCOM_001_2000957
crossref_primary_10_1016_j_yofte_2021_102724
crossref_primary_10_1109_TVT_2021_3103568
crossref_primary_10_1049_cmu2_12424
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1109_JIOT_2024_3373097
crossref_primary_10_1109_LCOMM_2024_3350369
crossref_primary_10_3390_s22010333
crossref_primary_10_1109_COMST_2021_3053615
crossref_primary_10_1016_j_comnet_2021_107930
crossref_primary_10_1109_MCOM_001_2000050
crossref_primary_10_1109_JLT_2022_3148270
crossref_primary_10_1016_j_dsp_2021_103161
crossref_primary_10_1109_TWC_2024_3485991
crossref_primary_10_3390_electronics11193130
crossref_primary_10_1016_j_nancom_2023_100476
crossref_primary_10_1109_TMBMC_2023_3297135
crossref_primary_10_1109_TWC_2022_3159762
crossref_primary_10_1109_TWC_2023_3272525
crossref_primary_10_1016_j_dcan_2024_10_006
crossref_primary_10_1063_5_0082856
crossref_primary_10_1109_TSP_2019_2908906
crossref_primary_10_1109_TSP_2021_3066069
crossref_primary_10_1109_JPROC_2023_3247480
crossref_primary_10_1016_j_compeleceng_2024_109425
crossref_primary_10_1109_MBITS_2022_3212978
crossref_primary_10_1109_ACCESS_2024_3381542
crossref_primary_10_1007_s11277_022_10111_7
crossref_primary_10_1109_TWC_2023_3241841
crossref_primary_10_1016_j_optcom_2022_128868
crossref_primary_10_1109_JSAC_2019_2934004
crossref_primary_10_1109_OJIES_2025_3560946
crossref_primary_10_1016_j_dsp_2021_103170
crossref_primary_10_1109_JSAC_2019_2933969
crossref_primary_10_1109_TNB_2023_3262555
crossref_primary_10_1109_TWC_2023_3270236
crossref_primary_10_1109_TCCN_2020_3018736
crossref_primary_10_1109_TCOMM_2024_3516504
crossref_primary_10_1109_TCCN_2020_2990773
crossref_primary_10_1109_LWC_2020_3009170
crossref_primary_10_1016_j_phycom_2022_101922
crossref_primary_10_3390_rs15184553
crossref_primary_10_1109_JSAC_2019_2933964
crossref_primary_10_1109_TWC_2025_3533959
crossref_primary_10_1109_TVT_2022_3158692
crossref_primary_10_1109_LCOMM_2023_3297129
crossref_primary_10_1109_TCOMM_2022_3219141
crossref_primary_10_1109_TVT_2019_2951822
crossref_primary_10_1109_ACCESS_2024_3483443
crossref_primary_10_1109_TCOMM_2019_2954399
crossref_primary_10_1109_JPROC_2019_2941458
crossref_primary_10_1109_LCOMM_2022_3189030
crossref_primary_10_32604_cmc_2021_016230
crossref_primary_10_1109_JLT_2024_3519360
crossref_primary_10_1109_JPHOT_2020_3019824
crossref_primary_10_2478_amns_2025_0605
crossref_primary_10_1109_TSP_2021_3139506
crossref_primary_10_1109_LCOMM_2021_3105601
crossref_primary_10_1109_JSEN_2023_3274293
crossref_primary_10_1109_TMBMC_2023_3342731
crossref_primary_10_1109_TWC_2020_2972352
Cites_doi 10.1109/JSAC.2016.2525538
10.1002/9780470741627
10.1109/COMST.2016.2527741
10.1002/ecja.20352
10.1109/78.650093
10.1016/j.neunet.2005.06.042
10.1016/S0165-1684(00)00030-X
10.1109/MCOM.2009.4752682
10.1109/49.339913
10.1073/pnas.1508521112
10.1109/MCOM.2012.6122529
10.1371/journal.pone.0082935
10.1016/j.comnet.2008.04.001
10.1109/JSTSP.2017.2788405
10.1126/scitranslmed.aaa3519
10.1109/JSAC.2009.091203
10.1109/TCOMM.2018.2792457
10.1016/j.jmb.2005.10.076
10.1109/TCCN.2017.2758370
10.1038/nature14539
10.1109/MSP.2012.2205597
10.1109/PROC.1973.9030
10.1109/TWC.2015.2436398
10.1109/TCOMM.2013.112513.130142
10.1049/ip-i-2.1990.0056
10.1007/s11277-007-9293-0
10.1109/72.554195
10.1109/26.153366
10.1109/JSTSP.2017.2784180
10.1017/CBO9781139149693
10.1109/TIT.2012.2193554
10.1109/JSTSP.2018.2794062
10.1109/TMBMC.2015.2502858
10.1109/TNB.2014.2337239
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2018.2868322
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5678
ExternalDocumentID 10_1109_TSP_2018_2868322
8454325
Genre orig-research
GrantInformation_xml – fundername: ONR
  grantid: N00014-18-1-2191
– fundername: NSF Center for Science of Information
  grantid: NSF-CCF-0939370
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-6f0fb944cda9e157523e15b6b92b60f571b76205f61eab69af9bb12a05db0293
IEDL.DBID RIE
ISICitedReferencesCount 265
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446159800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:12:37 EDT 2025
Tue Nov 18 22:35:49 EST 2025
Sat Nov 29 04:10:47 EST 2025
Wed Aug 27 02:50:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-6f0fb944cda9e157523e15b6b92b60f571b76205f61eab69af9bb12a05db0293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0157-1596
PQID 2117187082
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_2117187082
crossref_citationtrail_10_1109_TSP_2018_2868322
ieee_primary_8454325
crossref_primary_10_1109_TSP_2018_2868322
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref58
majumdar (ref56) 0; 6709
ref53
ref55
amodei (ref31) 0
ref17
ghassemlooy (ref35) 2012
lingyun (ref61) 0; 1
nachmani (ref19) 2017
ref50
shamai (ref52) 0; 137
grzybowski (ref10) 2009
ref48
ref47
ref42
li (ref34) 0
o’shea (ref18) 0
samuel (ref23) 0
ref43
ref49
forney (ref60) 0; 61
murillo-fuentes (ref14) 2006
ref4
ref3
ref5
ref40
jamali (ref39) 0
ref37
viterbi (ref44) 2013
ref36
jamali (ref38) 2016; 64
graves (ref30) 0
ref1
he (ref28) 0
lecun (ref6) 2015; 521
ibnkahla (ref8) 2000; 80
cammerer (ref22) 0
moritani (ref2) 0
nachmani (ref16) 0
farsad (ref41) 0
o’shea (ref25) 0
krizhevsky (ref27) 0
dahlman (ref45) 2013
lee (ref24) 2017
kingma (ref62) 0
ref26
ref64
ref20
farsad (ref9) 0
ref63
ref65
slomovic (ref66) 0; 112
ref21
cover (ref46) 2006
ref29
graves (ref51) 0
cho (ref33) 0
goodfellow (ref7) 2016
bahdanau (ref32) 2015
farsad (ref54) 0
debnath (ref11) 2011
References_xml – start-page: 939
  year: 2006
  ident: ref14
  article-title: Gaussian processes for multiuser detection in DS-CDMA receivers
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 369
  year: 0
  ident: ref51
  article-title: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref43
  doi: 10.1109/JSAC.2016.2525538
– volume: 64
  start-page: 423
  year: 2016
  ident: ref38
  article-title: Channel estimation for diffusive molecular communications
  publication-title: IEEE Trans Commun
– year: 2009
  ident: ref10
  publication-title: Chemistry in Motion Reaction-Diffusion Systems for Micro- And Nanotechnology
  doi: 10.1002/9780470741627
– ident: ref5
  doi: 10.1109/COMST.2016.2527741
– ident: ref55
  doi: 10.1002/ecja.20352
– year: 2017
  ident: ref19
  article-title: RNN decoding of linear block codes
  publication-title: arXiv 1702 07560
– year: 2016
  ident: ref7
  publication-title: Deep Learning
– start-page: 1097
  year: 0
  ident: ref27
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1109/78.650093
– year: 2015
  ident: ref32
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref50
  doi: 10.1016/j.neunet.2005.06.042
– start-page: 2468
  year: 0
  ident: ref54
  article-title: Capacity of molecular channels with imperfect particle-intensity modulation and detection
  publication-title: Proc IEEE Int Symp Inf Theory
– start-page: 5
  year: 0
  ident: ref2
  article-title: Molecular communication for health care applications
  publication-title: Proc 4th Annu IEEE Int Conf Pervasive Comput Commun Workshops
– start-page: 223
  year: 0
  ident: ref18
  article-title: Learning to communicate: Channel auto-encoders, domain specific regularizers, and attention
  publication-title: Proc IEEE Int Symp Signal Process Inf Technol
– volume: 80
  start-page: 1185
  year: 2000
  ident: ref8
  article-title: Applications of neural networks to digital communications: A survey
  publication-title: Signal Process
  doi: 10.1016/S0165-1684(00)00030-X
– ident: ref1
  doi: 10.1109/MCOM.2009.4752682
– year: 0
  ident: ref34
  article-title: Protein secondary structure prediction using cascaded convolutional and recurrent neural networks
  publication-title: Proc Int Joint Conf Artif Intell
– year: 2012
  ident: ref35
  publication-title: Optical Wireless Communications System and Channel Modelling with MATLAB
– ident: ref13
  doi: 10.1109/49.339913
– volume: 112
  start-page: 14 429
  year: 0
  ident: ref66
  article-title: Synthetic biology devices for in vitro and in vivo diagnostics
  publication-title: Proc Nat Acad Sci
  doi: 10.1073/pnas.1508521112
– ident: ref63
  doi: 10.1109/MCOM.2012.6122529
– year: 0
  ident: ref62
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– start-page: 1724
  year: 0
  ident: ref33
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: Proc Conf Emp Methods Natural Lang Process
– start-page: 173
  year: 0
  ident: ref31
  article-title: Deep speech 2: End-to-end speech recognition in English and Mandarin
  publication-title: Proc Int Conf Mach Learn
– year: 2017
  ident: ref24
  article-title: Machine learning based channel modeling for molecular MIMO communications
  publication-title: Proc IEEE Int Workshop Signal Process Adv Wireless Commun
– ident: ref42
  doi: 10.1371/journal.pone.0082935
– start-page: 1
  year: 0
  ident: ref41
  article-title: A novel experimental platform for in-vessel multi-chemical molecular communications
  publication-title: Proc IEEE Global Commun Conf
– start-page: 1
  year: 0
  ident: ref25
  article-title: Learning approximate neural estimators for wireless channel state information
  publication-title: Proc IEEE 27th Int Workshop Mach Learn Signal Process
– year: 2013
  ident: ref45
  publication-title: 4G LTE/LTE-Advanced for Mobile Broadband
– ident: ref3
  doi: 10.1016/j.comnet.2008.04.001
– ident: ref20
  doi: 10.1109/JSTSP.2017.2788405
– ident: ref65
  doi: 10.1126/scitranslmed.aaa3519
– year: 2006
  ident: ref46
  publication-title: Elements of Information Theory
– ident: ref57
  doi: 10.1109/JSAC.2009.091203
– volume: 6709
  year: 0
  ident: ref56
  article-title: Reconstruction of probability density function of intensity fluctuations relevant to free-space laser communications through atmospheric turbulence
  publication-title: Proc SPIE
– start-page: 1
  year: 0
  ident: ref22
  article-title: Scaling deep learning-based decoding of polar codes via partitioning
  publication-title: Proc IEEE Global Commun Conf
– start-page: 1764
  year: 0
  ident: ref30
  article-title: Towards end-to-end speech recognition with recurrent neural networks
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref40
  doi: 10.1109/TCOMM.2018.2792457
– start-page: 770
  year: 0
  ident: ref28
  article-title: Deep residual learning for image recognition
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref64
  doi: 10.1016/j.jmb.2005.10.076
– ident: ref26
  doi: 10.1109/TCCN.2017.2758370
– volume: 521
  start-page: 436
  year: 2015
  ident: ref6
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 0
  ident: ref9
  article-title: A molecular communication system using acids, bases and hydrogen ions
  publication-title: Proc IEEE 17th Int Workshop Signal Process Advances Wireless Commun
– start-page: 3190
  year: 0
  ident: ref39
  article-title: SCW codes for optimal CSI-free detection in diffusive molecular communications
  publication-title: Proc IEEE Int Symp Inf Theory
– ident: ref29
  doi: 10.1109/MSP.2012.2205597
– volume: 61
  start-page: 268
  year: 0
  ident: ref60
  article-title: The Viterbi algorithm
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1973.9030
– ident: ref36
  doi: 10.1109/TWC.2015.2436398
– ident: ref53
  doi: 10.1109/TCOMM.2013.112513.130142
– volume: 137
  start-page: 424
  year: 0
  ident: ref52
  article-title: Capacity of a pulse amplitude modulated direct detection photon channel
  publication-title: IEE Proc I-Commun Speech Vis
  doi: 10.1049/ip-i-2.1990.0056
– ident: ref15
  doi: 10.1007/s11277-007-9293-0
– ident: ref47
  doi: 10.1109/72.554195
– ident: ref12
  doi: 10.1109/26.153366
– ident: ref17
  doi: 10.1109/JSTSP.2017.2784180
– volume: 1
  start-page: 699
  year: 0
  ident: ref61
  article-title: Efficient Viterbi beam search algorithm using dynamic pruning
  publication-title: Proc 7th Int Conf Signal Process
– year: 2013
  ident: ref44
  publication-title: Principles of Digital Communication and Coding
– ident: ref4
  doi: 10.1017/CBO9781139149693
– ident: ref58
  doi: 10.1109/TIT.2012.2193554
– start-page: 1
  year: 0
  ident: ref23
  article-title: Deep MIMO detection
  publication-title: proc IEEE 18th Int Workshop Signal Process Adv Wireless Commun
– ident: ref21
  doi: 10.1109/JSTSP.2018.2794062
– year: 2011
  ident: ref11
  publication-title: Nonlinear partial differential equations for scientists and engineers
– ident: ref37
  doi: 10.1109/TMBMC.2015.2502858
– start-page: 341
  year: 0
  ident: ref16
  article-title: Learning to decode linear codes using deep learning
  publication-title: Proc 54th Annu Allerton Conf Commun Control Comput
– ident: ref59
  doi: 10.1109/TNB.2014.2337239
– ident: ref48
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014496
Score 2.665132
Snippet We consider detection based on deep learning, and show it is possible to train detectors that perform well without any knowledge of the underlying channel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5663
SubjectTerms Artificial neural networks
Bit error rate
Channel estimation
Channel models
Communication systems
deep learning
detection
Detection algorithms
Detectors
Error detection
free-space optical communication
Machine learning
molecular communication
Neural networks
optical communication
Performance evaluation
Receivers
Recurrent neural networks
Sensors
supervised learning
Title Neural Network Detection of Data Sequences in Communication Systems
URI https://ieeexplore.ieee.org/document/8454325
https://www.proquest.com/docview/2117187082
Volume 66
WOSCitedRecordID wos000446159800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JridEoOXgS7pV3SNEfZHB5kDDZkt5KkCQykk63z7zdJu-JQBE_t4SWUXz7e7_V9AdwrgmXMJA0kx0lABkIG3FkpSaaIJllilG8H9PbKJpNkseDTBjzWuTBaax98pnvu1fvys5Xaul9l_YRQMohoE5qMsTJXq_YYEOJ7cVm6MAhowhY7lyTm_fls6mK4kl6UxG4D76kg31Plx0Xstcv45H_fdQrHFYtET-Wyn0FD5-dw9K22YBuGruyGlZmUcd5opAsfdZWjlUEjUQg020VRo2WO9hJFUFXH_ALm4-f58CWoOiYEKuJhEcQGG8kJUZngOrRMLBrYh4wlj2SMDWWhtJcfpiYOtZAxF4ZLGUYC00xiq_gvoZWvcn0FiMVKSGG5FrGMihrCmckyq8siRR0liDrQ32GYqqqauGtq8Z56qwLz1KKeOtTTCvUOPNQjPspKGn_Ith3KtVwFcAe6u2VKq6O2Sa0Fa_Urs1Tm-vdRN3Do5i4TCLvQKtZbfQsH6rNYbtZ3fhd9Ab6dw4Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3sV5zYMvgnVplrTNo2yOiXMIDtlbSdIEBtLJ1vn7TdJuOBTBp_bhhJQvl_OdnhvAtaJYRrFkgeQ4CWhLyIA7KyXJFNU0S4zy7YDe-vFgkIxG_KUGt8tcGK21Dz7Td-7V-_KziZq7X2XNhDLaImwN1hmlJCyztZY-A0p9Ny5LGFoBS-LRwimJeXP4-uKiuJI7kkRuC68oId9V5cdV7PVLd_d_X7YHOxWPRPflwu9DTecHsP2tuuAhtF3hDSszKCO9UUcXPu4qRxODOqIQ6HURR43GOVpJFUFVJfMjGHYfhu1eUPVMCBThYRFEBhvJKVWZ4Dq0XIy07ENGkhMZYcPiUNrrDzMThVrIiAvDpQyJwCyT2Kr-Y6jnk1yfAIojJaSwbItaTsUM5bHJMqvNiGKOFJAGNBcYpqqqJ-7aWryn3q7APLWopw71tEK9ATfLER9lLY0_ZA8dyku5CuAGnC-WKa0O2yy1NqzVsLElM6e_j7qCzd7wuZ_2HwdPZ7Dl5inTCc-hXkzn-gI21Gcxnk0v_Y76AhcWxss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Detection+of+Data+Sequences+in+Communication+Systems&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Farsad%2C+Nariman&rft.au=Goldsmith%2C+Andrea&rft.date=2018-11-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=66&rft.issue=21&rft.spage=5663&rft.epage=5678&rft_id=info:doi/10.1109%2FTSP.2018.2868322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2018_2868322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon