Identifying Cognitive Radars - Inverse Reinforcement Learning using Revealed Preferences

We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer) Given the observed sequence of actions taken by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing Jg. 68; S. 1
Hauptverfasser: Krishnamurthy, Vikram, Angley, Daniel, Evans, Rob, Moran, Bill
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1053-587X, 1941-0476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer) Given the observed sequence of actions taken by the enemy's radar, we consider three problems: (i) Are the enemy radar's actions (waveform choice, beam scheduling) consistent with constrained utility maximization If so how can we estimate the cognitive radar's utility function that is consistent with its actions. We formulate and solve the problem in terms of the spectra (eigenvalues) of the state and observation noise covariance matrices, and the algebraic Riccati equation. (ii) How to construct a statistical test for detecting a cognitive radar (constrained utility maximization) when we observe the radar's actions in noise or the radar observes our probe signal in noise We propose a statistical detector with a tight Type-II error bound. (iii) How can we optimally probe (interrogate) the enemy's radar by choosing our state to minimize the Type-II error of detecting if the radar is deploying an economic rational strategy, subject to a constraint on the Type-I detection error We present a stochastic optimization algorithm to optimize our probe signal. The main analysis framework used in this paper is that of revealed preferences from microeconomics.
AbstractList We consider an inverse reinforcement learning problem involving “us” versus an “enemy” radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer)? Given the observed sequence of actions taken by the enemy's radar, we consider three problems: (i) Are the enemy radar's actions (waveform choice, beam scheduling) consistent with constrained utility maximization? If so how can we estimate the cognitive radar's utility function that is consistent with its actions. We formulate, and solve the problem in terms of the spectra (eigenvalues) of the state, and observation noise covariance matrices, and the algebraic Riccati equation. (ii) How to construct a statistical test for detecting a cognitive radar (constrained utility maximization) when we observe the radar's actions in noise or the radar observes our probe signal in noise? We propose a statistical detector with a tight Type-II error bound. (iii) How can we optimally probe (interrogate) the enemy's radar by choosing our state to minimize the Type-II error of detecting if the radar is deploying an economic rational strategy, subject to a constraint on the Type-I detection error? We present a stochastic optimization algorithm to optimize our probe signal. The main analysis framework used in this paper is that of revealed preferences from microeconomics.
Author Angley, Daniel
Moran, Bill
Evans, Rob
Krishnamurthy, Vikram
Author_xml – sequence: 1
  givenname: Vikram
  surname: Krishnamurthy
  fullname: Krishnamurthy, Vikram
  email: vikramk@cornell.edu
  organization: Electrical and Computer Engineering, Cornell University, Ithaca, New York United States (e-mail: vikramk@cornell.edu)
– sequence: 2
  givenname: Daniel
  surname: Angley
  fullname: Angley, Daniel
  email: dangley@unimelb.edu.au
  organization: University of Melbourne, Melbourne, Victoria Australia (e-mail: dangley@unimelb.edu.au)
– sequence: 3
  givenname: Rob
  surname: Evans
  fullname: Evans, Rob
  email: robinje@unimelb.edu.au
  organization: Electrical and Electronic Engineering, the University of Melbourne, MELBOURNE, Victoria Australia (e-mail: robinje@unimelb.edu.au)
– sequence: 4
  givenname: Bill
  surname: Moran
  fullname: Moran, Bill
  email: wmoran@unimelb.edu.au
  organization: University of Melbourne, Parkville, Victoria Australia (e-mail: wmoran@unimelb.edu.au)
BookMark eNp9kMtrAjEQxkOxULW9F3pZ6Hlt3rs5FulDECrWgrclm8xKRLM2WQX_-0aUHnroZWYYvt88vgHq-dYDQvcEjwjB6mnxORtRTPGIYcIEkVeoTxQnOeaF7KUaC5aLsljeoEGMa4wJ50r20XJiwXeuOTq_ysbtyrvOHSCba6tDzPJs4g8QYmqA800bDGyTPJuCDv5E7OMpzuEAegM2mwVoIIA3EG_RdaM3Ee4ueYi-Xl8W4_d8-vE2GT9Pc0MV6XJpGRhdK1rbWkJphTCM4dIUpilZ3RS2oNZg4LSWEkxTCC4Y8JpILoBqatkQPZ7n7kL7vYfYVet2H3xaWVHOpFCqTK8PkTyrTGhjTFdWxnW6c63vgnabiuDq5GKVXKxOLlYXFxOI_4C74LY6HP9DHs6IA4BfuSLpdMXYD8fzgD8
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TAES_2024_3383414
crossref_primary_10_1049_rsn2_12142
crossref_primary_10_1109_JSEN_2024_3454121
crossref_primary_10_1109_TAES_2024_3406671
crossref_primary_10_1109_TAES_2021_3090901
crossref_primary_10_1109_TAES_2024_3394453
crossref_primary_10_1016_j_dsp_2025_105212
crossref_primary_10_1109_TITS_2024_3389973
crossref_primary_10_1109_TSP_2024_3396626
crossref_primary_10_3390_rs15235467
crossref_primary_10_1016_j_eswa_2025_128599
crossref_primary_10_1109_TVT_2022_3197425
crossref_primary_10_1109_TSP_2023_3304761
crossref_primary_10_1109_TSP_2025_3556702
crossref_primary_10_3390_electronics11030441
Cites_doi 10.2307/1909517
10.1109/JPROC.2012.2193709
10.2307/2548836
10.1111/j.1468-0297.2012.02504.x
10.1002/0471722138
10.1109/TSP.2007.897908
10.1108/S0731-9053(2009)0000024012
10.1109/LSP.2012.2221711
10.2307/2525382
10.1109/MSP.2006.1593335
10.1017/CBO9781316471104
10.1109/TAES.2003.1261132
10.1109/18.333866
10.1109/TSP.2016.2646667
10.2307/1912771
10.1109/TSP.2009.2022915
10.2307/2296957
10.1093/0198284616.001.0001
10.1109/TSP.2019.2956676
10.1198/073500104000000253
10.1109/LCSYS.2019.2911802
10.1093/acprof:oso/9780199298839.003.0007
10.1007/s10626-009-0071-x
10.1016/j.jet.2008.03.002
10.1109/ACCESS.2016.2629478
10.1111/j.1468-0297.2012.02505.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.3013516
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 1
ExternalDocumentID 10_1109_TSP_2020_3013516
9154593
Genre orig-research
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  grantid: FA9550-18-1-0007
  funderid: 10.13039/100000181
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-6d3ecab92bdb6e8d55c3308c7cf83bf7d72dc0e42b66ecf75453e4b1645e2a2d3
IEDL.DBID RIE
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000562044500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:13:22 EDT 2025
Sat Nov 29 04:10:51 EST 2025
Tue Nov 18 22:32:10 EST 2025
Wed Aug 27 02:33:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-6d3ecab92bdb6e8d55c3308c7cf83bf7d72dc0e42b66ecf75453e4b1645e2a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6219-2341
0000-0002-4170-6056
PQID 2436599805
PQPubID 85478
PageCount 1
ParticipantIDs ieee_primary_9154593
proquest_journals_2436599805
crossref_primary_10_1109_TSP_2020_3013516
crossref_citationtrail_10_1109_TSP_2020_3013516
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref14
ref31
ref11
ref10
bar-shalom (ref28) 2008
ref1
ref17
ref16
ref19
ref18
trees (ref29) 1968
ng (ref2) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
kushner (ref32) 2003
li (ref27) 2003; 39
ref8
ref7
ref4
ref3
ref6
ref5
varian (ref12) 1985; 75
frankel (ref33) 1962; 52
mas-colell (ref9) 1995
anderson (ref30) 1979
References_xml – volume: 52
  start-page: 996
  year: 1962
  ident: ref33
  article-title: The production function in allocation and growth: A synthesis
  publication-title: Amer Econ Rev
– ident: ref34
  doi: 10.2307/1909517
– ident: ref18
  doi: 10.1109/JPROC.2012.2193709
– ident: ref3
  doi: 10.2307/2548836
– ident: ref6
  doi: 10.1111/j.1468-0297.2012.02504.x
– ident: ref31
  doi: 10.1002/0471722138
– ident: ref22
  doi: 10.1109/TSP.2007.897908
– ident: ref15
  doi: 10.1108/S0731-9053(2009)0000024012
– ident: ref16
  doi: 10.1109/LSP.2012.2221711
– ident: ref4
  doi: 10.2307/2525382
– year: 1968
  ident: ref29
  publication-title: Detection Estimation and Modulation Theory
– ident: ref1
  doi: 10.1109/MSP.2006.1593335
– year: 1979
  ident: ref30
  publication-title: Optimal Filtering
– ident: ref23
  doi: 10.1017/CBO9781316471104
– year: 2003
  ident: ref32
  publication-title: Stochastic Approximation Algorithms and Recursive Algorithms and Applications
– volume: 39
  start-page: 1333
  year: 2003
  ident: ref27
  article-title: Survey of maneuvering target tracking. Part i. Dynamic models
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2003.1261132
– ident: ref19
  doi: 10.1109/18.333866
– ident: ref17
  doi: 10.1109/TSP.2016.2646667
– ident: ref11
  doi: 10.2307/1912771
– year: 2008
  ident: ref28
  publication-title: Estimation with Applications to Tracking and Navigation
– start-page: 663
  year: 0
  ident: ref2
  article-title: Algorithms for inverse reinforcement learning
  publication-title: Proc 17th Int Conf Mach Learn
– ident: ref20
  doi: 10.1109/TSP.2009.2022915
– ident: ref8
  doi: 10.2307/2296957
– ident: ref5
  doi: 10.1093/0198284616.001.0001
– year: 1995
  ident: ref9
  publication-title: Microeconomic Theory
– ident: ref24
  doi: 10.1109/TSP.2019.2956676
– ident: ref14
  doi: 10.1198/073500104000000253
– ident: ref25
  doi: 10.1109/LCSYS.2019.2911802
– ident: ref10
  doi: 10.1093/acprof:oso/9780199298839.003.0007
– volume: 75
  start-page: 870
  year: 1985
  ident: ref12
  article-title: Price discrimination and social welfare
  publication-title: Amer Econ Rev
– ident: ref21
  doi: 10.1007/s10626-009-0071-x
– ident: ref13
  doi: 10.1016/j.jet.2008.03.002
– ident: ref26
  doi: 10.1109/ACCESS.2016.2629478
– ident: ref7
  doi: 10.1111/j.1468-0297.2012.02505.x
SSID ssj0014496
Score 2.51481
Snippet We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the...
We consider an inverse reinforcement learning problem involving “us” versus an “enemy” radar equipped with a Bayesian tracker. By observing the emissions of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adversarial signal processing
Afriat's theorem
algebraic Riccati equation
Algorithms
Bayes methods
beam scheduling
Cognitive radar
Constraints
Covariance matrix
detection
economics-based-rationality
Eigenvalues
Error detection
identifying cognitive behavior
inverse reinforcement learning
Kalman filter tracker
Learning (artificial intelligence)
Machine learning
Maximization
Noise
Optimization
Probes
Radar
Radar detection
Radar tracking
revealed preferences
Riccati equation
spectral revealed preferences
Statistical tests
stochastic gradient algorithm
waveform selection
Waveforms
Title Identifying Cognitive Radars - Inverse Reinforcement Learning using Revealed Preferences
URI https://ieeexplore.ieee.org/document/9154593
https://www.proquest.com/docview/2436599805
Volume 68
WOSCitedRecordID wos000562044500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYNxukjbJUUTxILL4gL2VZjIrguzK7urvN0m7RVEEb6VNQjPTZt7fAJyE4055g8iRep4r7yteaYNc51Z4rZzvuYSuf6vv7sxgYPsLcNbWwhBRSj6j83iZYvl-jO_RVda1Ud5buQiLWuu6VquNGCiVenEFdUHy3OjBPCSZ2e7jQz8YgiLYp1nsR1d8E0Gpp8qPgzhJl-v1_73XBqw1WiS7qNm-CQs02oLVL9iC2zCoS3BTGRO7nCcJsfvKB1OWcRYBNibTcIMSdiomNyFr4FafWcyHfw4PP6Ii6Vm_bUcy3YGn66vHyxvetFHgKGxvxgsvCStnhfOuIOPzHKXMDGocGumG2mvhMSMlXFEQDnXYiyTlgh2Vk6iEl7uwNBqPaA-YNJo86koK4xRRYYqgcQjnVFg0tw470J1TtsQGYzy2ungtk62R2TLwooy8KBtedOC0nfFW42v8MXY70r4d15C9A4dz5pXNDzgthZJFHkzJLN__fdYBrMS1a2_KISzNJu90BMv4MXuZTo7Tt_UJstvNvQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xNmnwMLYBogyGH_YyaV5Tf8T244SGmFaqaitS36L4fEVIqKC28PdjO2kE2jRpb1FiJ85d4vv-HcCnuN2pYBE50iBwFULNa2ORG-1EMMqHgc_o-kMzGtnp1I034EtXC0NEOfmMvqbDHMsPt3ifXGV9l-S9ky_gpVZKDJpqrS5moFTuxhUVBsm1NdN1ULJw_cnvcTQFRbRQi9SRrnwmhHJXlT-24ixfznb-b2Vv4U2rR7JvDePfwQbN38P2E3TBXZg2Rbi5kImdrtOE2K86RGOWcZYgNhbLeIIyeipmRyFrAVevWMqIv4oXH5IqGdi4a0iy3IPLs--T03PeNlLgKNxgxcsgCWvvhA--JBu0RikLiwZnVvqZCUYELEgJX5aEMxPfRZLy0ZLSJGoR5D5szm_ndABMWkMBTS2F9YqotGXUOYT3Kt5UO4896K8pW2GLMp6aXdxU2dooXBV5USVeVC0vevC5m3HXIGz8Y-xuon03riV7D47WzKvaX3BZCSVLHY3JQh_-fdYJvD6fXAyr4Y_Rzw-wlZ7T-FaOYHO1uKdjeIUPq-vl4mP-zh4Bj5jRBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Cognitive+Radars+-+Inverse+Reinforcement+Learning+Using+Revealed+Preferences&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Krishnamurthy%2C+Vikram&rft.au=Angley%2C+Daniel&rft.au=Evans%2C+Robin&rft.au=Moran%2C+Bill&rft.date=2020-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=4529&rft.epage=4542&rft_id=info:doi/10.1109%2FTSP.2020.3013516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3013516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon