Identifying Cognitive Radars - Inverse Reinforcement Learning using Revealed Preferences
We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer) Given the observed sequence of actions taken by the...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on signal processing Jg. 68; S. 1 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer) Given the observed sequence of actions taken by the enemy's radar, we consider three problems: (i) Are the enemy radar's actions (waveform choice, beam scheduling) consistent with constrained utility maximization If so how can we estimate the cognitive radar's utility function that is consistent with its actions. We formulate and solve the problem in terms of the spectra (eigenvalues) of the state and observation noise covariance matrices, and the algebraic Riccati equation. (ii) How to construct a statistical test for detecting a cognitive radar (constrained utility maximization) when we observe the radar's actions in noise or the radar observes our probe signal in noise We propose a statistical detector with a tight Type-II error bound. (iii) How can we optimally probe (interrogate) the enemy's radar by choosing our state to minimize the Type-II error of detecting if the radar is deploying an economic rational strategy, subject to a constraint on the Type-I detection error We present a stochastic optimization algorithm to optimize our probe signal. The main analysis framework used in this paper is that of revealed preferences from microeconomics. |
|---|---|
| AbstractList | We consider an inverse reinforcement learning problem involving “us” versus an “enemy” radar equipped with a Bayesian tracker. By observing the emissions of the enemy radar, how can we identify if the radar is cognitive (constrained utility maximizer)? Given the observed sequence of actions taken by the enemy's radar, we consider three problems: (i) Are the enemy radar's actions (waveform choice, beam scheduling) consistent with constrained utility maximization? If so how can we estimate the cognitive radar's utility function that is consistent with its actions. We formulate, and solve the problem in terms of the spectra (eigenvalues) of the state, and observation noise covariance matrices, and the algebraic Riccati equation. (ii) How to construct a statistical test for detecting a cognitive radar (constrained utility maximization) when we observe the radar's actions in noise or the radar observes our probe signal in noise? We propose a statistical detector with a tight Type-II error bound. (iii) How can we optimally probe (interrogate) the enemy's radar by choosing our state to minimize the Type-II error of detecting if the radar is deploying an economic rational strategy, subject to a constraint on the Type-I detection error? We present a stochastic optimization algorithm to optimize our probe signal. The main analysis framework used in this paper is that of revealed preferences from microeconomics. |
| Author | Angley, Daniel Moran, Bill Evans, Rob Krishnamurthy, Vikram |
| Author_xml | – sequence: 1 givenname: Vikram surname: Krishnamurthy fullname: Krishnamurthy, Vikram email: vikramk@cornell.edu organization: Electrical and Computer Engineering, Cornell University, Ithaca, New York United States (e-mail: vikramk@cornell.edu) – sequence: 2 givenname: Daniel surname: Angley fullname: Angley, Daniel email: dangley@unimelb.edu.au organization: University of Melbourne, Melbourne, Victoria Australia (e-mail: dangley@unimelb.edu.au) – sequence: 3 givenname: Rob surname: Evans fullname: Evans, Rob email: robinje@unimelb.edu.au organization: Electrical and Electronic Engineering, the University of Melbourne, MELBOURNE, Victoria Australia (e-mail: robinje@unimelb.edu.au) – sequence: 4 givenname: Bill surname: Moran fullname: Moran, Bill email: wmoran@unimelb.edu.au organization: University of Melbourne, Parkville, Victoria Australia (e-mail: wmoran@unimelb.edu.au) |
| BookMark | eNp9kMtrAjEQxkOxULW9F3pZ6Hlt3rs5FulDECrWgrclm8xKRLM2WQX_-0aUHnroZWYYvt88vgHq-dYDQvcEjwjB6mnxORtRTPGIYcIEkVeoTxQnOeaF7KUaC5aLsljeoEGMa4wJ50r20XJiwXeuOTq_ysbtyrvOHSCba6tDzPJs4g8QYmqA800bDGyTPJuCDv5E7OMpzuEAegM2mwVoIIA3EG_RdaM3Ee4ueYi-Xl8W4_d8-vE2GT9Pc0MV6XJpGRhdK1rbWkJphTCM4dIUpilZ3RS2oNZg4LSWEkxTCC4Y8JpILoBqatkQPZ7n7kL7vYfYVet2H3xaWVHOpFCqTK8PkTyrTGhjTFdWxnW6c63vgnabiuDq5GKVXKxOLlYXFxOI_4C74LY6HP9DHs6IA4BfuSLpdMXYD8fzgD8 |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3383414 crossref_primary_10_1049_rsn2_12142 crossref_primary_10_1109_JSEN_2024_3454121 crossref_primary_10_1109_TAES_2024_3406671 crossref_primary_10_1109_TAES_2021_3090901 crossref_primary_10_1109_TAES_2024_3394453 crossref_primary_10_1016_j_dsp_2025_105212 crossref_primary_10_1109_TITS_2024_3389973 crossref_primary_10_1109_TSP_2024_3396626 crossref_primary_10_3390_rs15235467 crossref_primary_10_1016_j_eswa_2025_128599 crossref_primary_10_1109_TVT_2022_3197425 crossref_primary_10_1109_TSP_2023_3304761 crossref_primary_10_1109_TSP_2025_3556702 crossref_primary_10_3390_electronics11030441 |
| Cites_doi | 10.2307/1909517 10.1109/JPROC.2012.2193709 10.2307/2548836 10.1111/j.1468-0297.2012.02504.x 10.1002/0471722138 10.1109/TSP.2007.897908 10.1108/S0731-9053(2009)0000024012 10.1109/LSP.2012.2221711 10.2307/2525382 10.1109/MSP.2006.1593335 10.1017/CBO9781316471104 10.1109/TAES.2003.1261132 10.1109/18.333866 10.1109/TSP.2016.2646667 10.2307/1912771 10.1109/TSP.2009.2022915 10.2307/2296957 10.1093/0198284616.001.0001 10.1109/TSP.2019.2956676 10.1198/073500104000000253 10.1109/LCSYS.2019.2911802 10.1093/acprof:oso/9780199298839.003.0007 10.1007/s10626-009-0071-x 10.1016/j.jet.2008.03.002 10.1109/ACCESS.2016.2629478 10.1111/j.1468-0297.2012.02505.x |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2020.3013516 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TSP_2020_3013516 9154593 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-18-1-0007 funderid: 10.13039/100000181 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-6d3ecab92bdb6e8d55c3308c7cf83bf7d72dc0e42b66ecf75453e4b1645e2a2d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000562044500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:13:22 EDT 2025 Sat Nov 29 04:10:51 EST 2025 Tue Nov 18 22:32:10 EST 2025 Wed Aug 27 02:33:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-6d3ecab92bdb6e8d55c3308c7cf83bf7d72dc0e42b66ecf75453e4b1645e2a2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6219-2341 0000-0002-4170-6056 |
| PQID | 2436599805 |
| PQPubID | 85478 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9154593 proquest_journals_2436599805 crossref_primary_10_1109_TSP_2020_3013516 crossref_citationtrail_10_1109_TSP_2020_3013516 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref15 ref14 ref31 ref11 ref10 bar-shalom (ref28) 2008 ref1 ref17 ref16 ref19 ref18 trees (ref29) 1968 ng (ref2) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 kushner (ref32) 2003 li (ref27) 2003; 39 ref8 ref7 ref4 ref3 ref6 ref5 varian (ref12) 1985; 75 frankel (ref33) 1962; 52 mas-colell (ref9) 1995 anderson (ref30) 1979 |
| References_xml | – volume: 52 start-page: 996 year: 1962 ident: ref33 article-title: The production function in allocation and growth: A synthesis publication-title: Amer Econ Rev – ident: ref34 doi: 10.2307/1909517 – ident: ref18 doi: 10.1109/JPROC.2012.2193709 – ident: ref3 doi: 10.2307/2548836 – ident: ref6 doi: 10.1111/j.1468-0297.2012.02504.x – ident: ref31 doi: 10.1002/0471722138 – ident: ref22 doi: 10.1109/TSP.2007.897908 – ident: ref15 doi: 10.1108/S0731-9053(2009)0000024012 – ident: ref16 doi: 10.1109/LSP.2012.2221711 – ident: ref4 doi: 10.2307/2525382 – year: 1968 ident: ref29 publication-title: Detection Estimation and Modulation Theory – ident: ref1 doi: 10.1109/MSP.2006.1593335 – year: 1979 ident: ref30 publication-title: Optimal Filtering – ident: ref23 doi: 10.1017/CBO9781316471104 – year: 2003 ident: ref32 publication-title: Stochastic Approximation Algorithms and Recursive Algorithms and Applications – volume: 39 start-page: 1333 year: 2003 ident: ref27 article-title: Survey of maneuvering target tracking. Part i. Dynamic models publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2003.1261132 – ident: ref19 doi: 10.1109/18.333866 – ident: ref17 doi: 10.1109/TSP.2016.2646667 – ident: ref11 doi: 10.2307/1912771 – year: 2008 ident: ref28 publication-title: Estimation with Applications to Tracking and Navigation – start-page: 663 year: 0 ident: ref2 article-title: Algorithms for inverse reinforcement learning publication-title: Proc 17th Int Conf Mach Learn – ident: ref20 doi: 10.1109/TSP.2009.2022915 – ident: ref8 doi: 10.2307/2296957 – ident: ref5 doi: 10.1093/0198284616.001.0001 – year: 1995 ident: ref9 publication-title: Microeconomic Theory – ident: ref24 doi: 10.1109/TSP.2019.2956676 – ident: ref14 doi: 10.1198/073500104000000253 – ident: ref25 doi: 10.1109/LCSYS.2019.2911802 – ident: ref10 doi: 10.1093/acprof:oso/9780199298839.003.0007 – volume: 75 start-page: 870 year: 1985 ident: ref12 article-title: Price discrimination and social welfare publication-title: Amer Econ Rev – ident: ref21 doi: 10.1007/s10626-009-0071-x – ident: ref13 doi: 10.1016/j.jet.2008.03.002 – ident: ref26 doi: 10.1109/ACCESS.2016.2629478 – ident: ref7 doi: 10.1111/j.1468-0297.2012.02505.x |
| SSID | ssj0014496 |
| Score | 2.51481 |
| Snippet | We consider an inverse reinforcement learning problem involving us versus an enemy radar equipped with a Bayesian tracker. By observing the emissions of the... We consider an inverse reinforcement learning problem involving “us” versus an “enemy” radar equipped with a Bayesian tracker. By observing the emissions of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | adversarial signal processing Afriat's theorem algebraic Riccati equation Algorithms Bayes methods beam scheduling Cognitive radar Constraints Covariance matrix detection economics-based-rationality Eigenvalues Error detection identifying cognitive behavior inverse reinforcement learning Kalman filter tracker Learning (artificial intelligence) Machine learning Maximization Noise Optimization Probes Radar Radar detection Radar tracking revealed preferences Riccati equation spectral revealed preferences Statistical tests stochastic gradient algorithm waveform selection Waveforms |
| Title | Identifying Cognitive Radars - Inverse Reinforcement Learning using Revealed Preferences |
| URI | https://ieeexplore.ieee.org/document/9154593 https://www.proquest.com/docview/2436599805 |
| Volume | 68 |
| WOSCitedRecordID | wos000562044500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGLYNxukjbJUUTxILL4gL2VZjIrguzK7urvN0m7RVEEb6VNQjPTZt7fAJyE4055g8iRep4r7yteaYNc51Z4rZzvuYSuf6vv7sxgYPsLcNbWwhBRSj6j83iZYvl-jO_RVda1Ud5buQiLWuu6VquNGCiVenEFdUHy3OjBPCSZ2e7jQz8YgiLYp1nsR1d8E0Gpp8qPgzhJl-v1_73XBqw1WiS7qNm-CQs02oLVL9iC2zCoS3BTGRO7nCcJsfvKB1OWcRYBNibTcIMSdiomNyFr4FafWcyHfw4PP6Ii6Vm_bUcy3YGn66vHyxvetFHgKGxvxgsvCStnhfOuIOPzHKXMDGocGumG2mvhMSMlXFEQDnXYiyTlgh2Vk6iEl7uwNBqPaA-YNJo86koK4xRRYYqgcQjnVFg0tw470J1TtsQGYzy2ungtk62R2TLwooy8KBtedOC0nfFW42v8MXY70r4d15C9A4dz5pXNDzgthZJFHkzJLN__fdYBrMS1a2_KISzNJu90BMv4MXuZTo7Tt_UJstvNvQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xNmnwMLYBogyGH_YyaV5Tf8T244SGmFaqaitS36L4fEVIqKC28PdjO2kE2jRpb1FiJ85d4vv-HcCnuN2pYBE50iBwFULNa2ORG-1EMMqHgc_o-kMzGtnp1I034EtXC0NEOfmMvqbDHMsPt3ifXGV9l-S9ky_gpVZKDJpqrS5moFTuxhUVBsm1NdN1ULJw_cnvcTQFRbRQi9SRrnwmhHJXlT-24ixfznb-b2Vv4U2rR7JvDePfwQbN38P2E3TBXZg2Rbi5kImdrtOE2K86RGOWcZYgNhbLeIIyeipmRyFrAVevWMqIv4oXH5IqGdi4a0iy3IPLs--T03PeNlLgKNxgxcsgCWvvhA--JBu0RikLiwZnVvqZCUYELEgJX5aEMxPfRZLy0ZLSJGoR5D5szm_ndABMWkMBTS2F9YqotGXUOYT3Kt5UO4896K8pW2GLMp6aXdxU2dooXBV5USVeVC0vevC5m3HXIGz8Y-xuon03riV7D47WzKvaX3BZCSVLHY3JQh_-fdYJvD6fXAyr4Y_Rzw-wlZ7T-FaOYHO1uKdjeIUPq-vl4mP-zh4Bj5jRBA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Cognitive+Radars+-+Inverse+Reinforcement+Learning+Using+Revealed+Preferences&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Krishnamurthy%2C+Vikram&rft.au=Angley%2C+Daniel&rft.au=Evans%2C+Robin&rft.au=Moran%2C+Bill&rft.date=2020-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=4529&rft.epage=4542&rft_id=info:doi/10.1109%2FTSP.2020.3013516&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_3013516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |