Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications

Given a , b ∈ R , m = min { a , b } and M = max { a , b } , we consider the orthogonal polynomials associated with nontrivial positive measures ϕ for which s u p p ( ϕ ) ⊂ ( - ∞ , m ] ∪ [ M , ∞ ) and ( x - a ) d ϕ ( x ) = - ( x - b ) d ϕ ( - x + a + b ) . For this class of measures, formulas in orde...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational & applied mathematics Ročník 42; číslo 3
Hlavní autori: Veronese, Daniel O., Silva, Jairo S., Pereira, Junior A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2023
Predmet:
ISSN:2238-3603, 1807-0302
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Given a , b ∈ R , m = min { a , b } and M = max { a , b } , we consider the orthogonal polynomials associated with nontrivial positive measures ϕ for which s u p p ( ϕ ) ⊂ ( - ∞ , m ] ∪ [ M , ∞ ) and ( x - a ) d ϕ ( x ) = - ( x - b ) d ϕ ( - x + a + b ) . For this class of measures, formulas in order to compute the moments, as well as formulas for the weights and nodes in the associated Gaussian quadrature rules are provided. We also show that the QD-algorithm can be applied in order to generate new orthogonal polynomials in a simple way. Several examples are given to illustrate the results obtained.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-023-02276-z