Quasi-symmetric orthogonal polynomials on the real line: moments, quadrature rules and invariance under Christoffel modifications

Given a , b ∈ R , m = min { a , b } and M = max { a , b } , we consider the orthogonal polynomials associated with nontrivial positive measures ϕ for which s u p p ( ϕ ) ⊂ ( - ∞ , m ] ∪ [ M , ∞ ) and ( x - a ) d ϕ ( x ) = - ( x - b ) d ϕ ( - x + a + b ) . For this class of measures, formulas in orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics Jg. 42; H. 3
Hauptverfasser: Veronese, Daniel O., Silva, Jairo S., Pereira, Junior A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.04.2023
Schlagworte:
ISSN:2238-3603, 1807-0302
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a , b ∈ R , m = min { a , b } and M = max { a , b } , we consider the orthogonal polynomials associated with nontrivial positive measures ϕ for which s u p p ( ϕ ) ⊂ ( - ∞ , m ] ∪ [ M , ∞ ) and ( x - a ) d ϕ ( x ) = - ( x - b ) d ϕ ( - x + a + b ) . For this class of measures, formulas in order to compute the moments, as well as formulas for the weights and nodes in the associated Gaussian quadrature rules are provided. We also show that the QD-algorithm can be applied in order to generate new orthogonal polynomials in a simple way. Several examples are given to illustrate the results obtained.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-023-02276-z