A Maximum-Likelihood TDOA Localization Algorithm Using Difference-of-Convex Programming

A popular approach to estimate a source location using time difference of arrival (TDOA) measurements is to construct an objective function based on the maximum likelihood (ML) method. An iterative algorithm can be employed to minimize that objective function. The main challenge in this optimization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 28; s. 309 - 313
Hlavní autoři: Ma, Xiuxiu, Ballal, Tarig, Chen, Hui, Aldayel, Omar, Al-Naffouri, Tareq Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A popular approach to estimate a source location using time difference of arrival (TDOA) measurements is to construct an objective function based on the maximum likelihood (ML) method. An iterative algorithm can be employed to minimize that objective function. The main challenge in this optimization process is the non-convexity of the objective function, which precludes the use of many standard convex optimization tools. Usually, approximations, such as convex relaxation, are applied, resulting in performance loss. In this work, we take advantage of difference-of-convex (DC) programming tools to develop an efficient solution to the ML TDOA localization problem. We show that, by using a simple trick, the objective function can be modified into an exact difference of two convex functions. Hence, tools from DC programming can be leveraged to carry out the optimization task, which guarantees convergence to a stationary point of the objective function. Simulation results show that, when initialized within the convex hull of the anchors, the proposed TDOA localization algorithm outperforms a number of benchmark methods, behaves as an exact ML estimator, and indeed achieves the Cramér-Rao lower bound.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2021.3051836