Spiral-based chaotic chicken swarm optimization algorithm for parameters identification of photovoltaic models

Photovoltaic (PV) systems are becoming increasingly significant because they can convert solar energy into electricity. The conversion efficiency is related to the PV models’ parameters, so it is crucial to identify the parameters of PV models. Recently, various metaheuristic methods have been propo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 25; číslo 20; s. 12875 - 12898
Hlavní autoři: Li, Miao, Li, Chunquan, Huang, Zhengyu, Huang, Jiehui, Wang, Gaige, Liu, Peter X.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2021
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Photovoltaic (PV) systems are becoming increasingly significant because they can convert solar energy into electricity. The conversion efficiency is related to the PV models’ parameters, so it is crucial to identify the parameters of PV models. Recently, various metaheuristic methods have been proposed to identify the parameters, but they cannot provide sufficient accurate and reliable performance. To address this problem, this paper proposes a spiral-based chaos chicken swarm optimization algorithm (SCCSO) including three strategies: (1) the information-sharing strategy provides the latest information of the roosters for searching global optimal solution, beneficial to improve the exploitation ability; (2) the spiral motion strategy can enable hens and chicks to move toward their corresponding targets with a spiral trajectory, improving the exploration ability; and (3) a self-adaptive-based chaotic disturbance mechanism is introduced around the global optimal solution to generate a promising solution for the worst chick at each iteration, thereby improving the convergence speed of the chicken flock. Besides, SCCSO is used for identifying different PV models such as the single-diode, the double-diode, and PV module models. Comprehensive analysis and experimental results show that SCCSO provides better robustness and accuracy than other advanced metaheuristic methods.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-021-06010-x