Large-Scale Beamforming for Massive MIMO via Randomized Sketching
Massive MIMO system yields significant improvements in spectral and energy efficiency for future wireless communication systems. The regularized zero-forcing (RZF) beamforming is able to provide good performance with the capability of achieving numerical stability and robustness to the channel uncer...
Saved in:
| Published in: | IEEE transactions on vehicular technology Vol. 70; no. 5; pp. 4669 - 4681 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9545, 1939-9359 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Massive MIMO system yields significant improvements in spectral and energy efficiency for future wireless communication systems. The regularized zero-forcing (RZF) beamforming is able to provide good performance with the capability of achieving numerical stability and robustness to the channel uncertainty. However, in massive MIMO systems, the matrix inversion operation in RZF beamforming becomes computationally expensive. To address this computational issue, we shall propose a novel randomized sketching based RZF beamforming approach with low computational complexity. This is achieved by solving a linear system via randomized sketching based on the preconditioned Richard iteration, which guarantees high quality approximations to the optimal solution. We theoretically prove that the sequence of approximations obtained iteratively converges to the exact RZF beamforming matrix linearly fast as the number of iterations increases. Also, it turns out that the system sum-rate for such sequence of approximations converges to the exact one at a linear convergence rate. Our simulation results verify our theoretical findings. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9545 1939-9359 |
| DOI: | 10.1109/TVT.2021.3071543 |