Dual Prediction-Correction Methods for Linearly Constrained Time-Varying Convex Programs

Devising efficient algorithms to solve continuously-varying strongly convex optimization programs is key in many applications, from control systems to signal processing and machine learning. In this context, solving means to find and track the optimizer trajectory of the continuously-varying convex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 64; H. 8; S. 3355 - 3361
1. Verfasser: Simonetto, Andrea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Devising efficient algorithms to solve continuously-varying strongly convex optimization programs is key in many applications, from control systems to signal processing and machine learning. In this context, solving means to find and track the optimizer trajectory of the continuously-varying convex optimization program. Recently, a novel prediction-correction methodology has been put forward to set up iterative algorithms that sample the continuously-varying optimization program at discrete time steps and perform a limited amount of computations to correct their approximate optimizer with the new sampled problem and predict how the optimizer will change at the next time step. Prediction-correction algorithms have been shown to outperform more classical strategies, i.e., correction-only methods. Typically, prediction-correction methods have asymptotical tracking errors of the order of <inline-formula><tex-math notation="LaTeX">h^2</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">h</tex-math></inline-formula> is the sampling period, whereas classical strategies have order of <inline-formula><tex-math notation="LaTeX">h</tex-math></inline-formula>. Up to now, prediction-correction algorithms have been developed in the primal space, both for unconstrained and simply constrained convex programs. In this paper, we show how to tackle linearly constrained continuously-varying problem by prediction-correction in the dual space and we prove similar asymptotical error bounds as their primal versions.
AbstractList Devising efficient algorithms to solve continuously-varying strongly convex optimization programs is key in many applications, from control systems to signal processing and machine learning. In this context, solving means to find and track the optimizer trajectory of the continuously-varying convex optimization program. Recently, a novel prediction–correction methodology has been put forward to set up iterative algorithms that sample the continuously-varying optimization program at discrete time steps and perform a limited amount of computations to correct their approximate optimizer with the new sampled problem and predict how the optimizer will change at the next time step. Prediction–correction algorithms have been shown to outperform more classical strategies, i.e., correction-only methods. Typically, prediction–correction methods have asymptotical tracking errors of the order of [Formula Omitted], where [Formula Omitted] is the sampling period, whereas classical strategies have order of [Formula Omitted]. Up to now, prediction–correction algorithms have been developed in the primal space, both for unconstrained and simply constrained convex programs. In this paper, we show how to tackle linearly constrained continuously-varying problem by prediction–correction in the dual space and we prove similar asymptotical error bounds as their primal versions.
Devising efficient algorithms to solve continuously-varying strongly convex optimization programs is key in many applications, from control systems to signal processing and machine learning. In this context, solving means to find and track the optimizer trajectory of the continuously-varying convex optimization program. Recently, a novel prediction-correction methodology has been put forward to set up iterative algorithms that sample the continuously-varying optimization program at discrete time steps and perform a limited amount of computations to correct their approximate optimizer with the new sampled problem and predict how the optimizer will change at the next time step. Prediction-correction algorithms have been shown to outperform more classical strategies, i.e., correction-only methods. Typically, prediction-correction methods have asymptotical tracking errors of the order of <inline-formula><tex-math notation="LaTeX">h^2</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX">h</tex-math></inline-formula> is the sampling period, whereas classical strategies have order of <inline-formula><tex-math notation="LaTeX">h</tex-math></inline-formula>. Up to now, prediction-correction algorithms have been developed in the primal space, both for unconstrained and simply constrained convex programs. In this paper, we show how to tackle linearly constrained continuously-varying problem by prediction-correction in the dual space and we prove similar asymptotical error bounds as their primal versions.
Author Simonetto, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0003-2923-3361
  surname: Simonetto
  fullname: Simonetto, Andrea
  email: andrea.simonetto@ibm.com
  organization: Optimization and Control Group of IBM Research Ireland, Dublin, Ireland
BookMark eNp9UDtPwzAQtlCRaAs7Eksk5hTbiR8Zq_CUimAoiM1ynUtxlcbFThH99zi0YmBgujt9j9P3jdCgdS0gdE7whBBcXM2n5YRiIidUCsElPUJDwphMKaPZAA1xhNKCSn6CRiGs4snznAzR2_VWN8mzh8qazro2LZ338LMmj9C9uyoktfPJzLagfbNLSteGzut4VsncriF91X5n22UPfMJXtHJLr9fhFB3Xuglwdphj9HJ7My_v09nT3UM5naWGFqRLOZU1hYoUoGmhJdbVoja6zgHnOMsKscBQMMIEJlUVeWBqY0glMOOYU5wtsjG63PtuvPvYQujUym19G18qSrlgOc9YHll8zzLeheChVsZ2uk_ZZ2kUwapvUcUWVd-iOrQYhfiPcOPtOkb-T3Kxl1gA-KVLhqkQMvsGPCF_rQ
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_jfranklin_2024_106898
crossref_primary_10_1109_JAS_2024_124374
crossref_primary_10_1109_TAC_2024_3358099
crossref_primary_10_1109_LCSYS_2019_2930491
crossref_primary_10_1016_j_arcontrol_2023_100904
crossref_primary_10_1109_TCNS_2020_3020972
crossref_primary_10_1002_rnc_6157
crossref_primary_10_1109_TCSI_2022_3185398
crossref_primary_10_1016_j_automatica_2024_112107
crossref_primary_10_1109_TAC_2023_3335004
crossref_primary_10_1109_TIE_2024_3511137
crossref_primary_10_1109_TPWRS_2023_3276049
crossref_primary_10_1016_j_amc_2024_128712
crossref_primary_10_1109_TAC_2020_3010242
crossref_primary_10_1016_j_jclepro_2022_131935
crossref_primary_10_1109_JPROC_2020_3003156
crossref_primary_10_1016_j_ijepes_2021_107859
crossref_primary_10_1109_LCSYS_2023_3312297
crossref_primary_10_1007_s10851_024_01214_w
crossref_primary_10_1109_TAC_2019_2917023
crossref_primary_10_1016_j_sigpro_2023_109089
crossref_primary_10_1109_TCNS_2023_3272220
crossref_primary_10_1109_JPROC_2025_3557698
crossref_primary_10_1109_LCSYS_2025_3582207
crossref_primary_10_1109_TAC_2024_3482977
crossref_primary_10_1109_TAC_2022_3190054
Cites_doi 10.1137/090762634
10.1109/TSP.2012.2222398
10.1109/TSP.2017.2728498
10.1137/16M1068736
10.1137/S0036144503423264
10.23919/ACC.2018.8431821
10.1137/120876915
10.1007/s10957-006-9080-1
10.1109/CDC.2016.7798732
10.1007/978-3-642-61257-2
10.1287/moor.5.1.43
10.1109/TAC.2017.2694611
10.1109/TAC.2017.2760256
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2018.2877682
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 3361
ExternalDocumentID 10_1109_TAC_2018_2877682
8502778
Genre orig-research
GrantInformation_xml – fundername: Milwaukee Hilton City Center
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-628f2ed19ea29a80adbfcaf4e0403397b0e9515701dd2edecfcc1d705606203b3
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478694300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:08:56 EDT 2025
Sat Nov 29 05:40:51 EST 2025
Tue Nov 18 22:43:12 EST 2025
Wed Aug 27 02:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-628f2ed19ea29a80adbfcaf4e0403397b0e9515701dd2edecfcc1d705606203b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2923-3361
PQID 2267546354
PQPubID 85475
PageCount 7
ParticipantIDs ieee_primary_8502778
proquest_journals_2267546354
crossref_primary_10_1109_TAC_2018_2877682
crossref_citationtrail_10_1109_TAC_2018_2877682
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
simonetto (ref14) 2017
polyak (ref7) 1987
ref2
ref1
ref16
ref8
simonetto (ref13) 2017
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1137/090762634
– ident: ref12
  doi: 10.1109/TSP.2012.2222398
– ident: ref5
  doi: 10.1109/TSP.2017.2728498
– ident: ref10
  doi: 10.1137/16M1068736
– ident: ref15
  doi: 10.1137/S0036144503423264
– ident: ref1
  doi: 10.23919/ACC.2018.8431821
– ident: ref9
  doi: 10.1137/120876915
– ident: ref16
  doi: 10.1007/s10957-006-9080-1
– year: 2017
  ident: ref13
  article-title: Time-Varying Convex Optimization via Time-Varying Averaged Operators
– ident: ref6
  doi: 10.1109/CDC.2016.7798732
– ident: ref11
  doi: 10.1007/978-3-642-61257-2
– ident: ref8
  doi: 10.1287/moor.5.1.43
– year: 2017
  ident: ref14
  article-title: Dual Prediction-Correction Methods for Linearly Constrained Time-Varying Convex Programs
  publication-title: 1709 05850
– ident: ref4
  doi: 10.1109/TAC.2017.2694611
– year: 1987
  ident: ref7
  publication-title: Introduction to Optimization
– ident: ref2
  doi: 10.1109/TAC.2017.2760256
SSID ssj0016441
Score 2.516309
Snippet Devising efficient algorithms to solve continuously-varying strongly convex optimization programs is key in many applications, from control systems to signal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3355
SubjectTerms Algorithms
Asymptotic methods
Asymptotic properties
Computational geometry
Convergence
Convex analysis
Convex functions
Convexity
Cost function
Dual ascent
Error correction
Iterative algorithms
Iterative methods
Machine learning
parametric programming
Prediction algorithms
prediction–correction methods
Signal processing
Signal processing algorithms
time-varying convex optimization
Tracking errors
Trajectory
Trajectory optimization
Title Dual Prediction-Correction Methods for Linearly Constrained Time-Varying Convex Programs
URI https://ieeexplore.ieee.org/document/8502778
https://www.proquest.com/docview/2267546354
Volume 64
WOSCitedRecordID wos000478694300023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5UPOjBVxWrVXLwIpg22aTZ3WOpigctPdTSW9hkJyBIK33hz3dmE4OiCN4WMrssM7s732ReAFdaKLQizPxAioQMFLJZdRyib4URpJ5IQ7rcqvGjHAzUZKKHG3BT58Igogs-wzYPnS_fzvIV_yrrqC57HNUmbEopy1yt2mPAer18dekCC1W7JAPdGfX6HMOl2mQdELoW31SQ66ny4yF22uV-_3_7OoC9CkV6vVLsh7CB0yPY_VJbsAGT2xVRDOfsiGHm-33uw-GG3pNrG73wCLB6ZIwiFzn2uHWnaxiB1uPEEH9s5pwDxR_W-E5LuUiuxTE839-N-g9-1UbBz4UOl34iVCHQhhqN0EYFxmZFbooY6f5GBEeyAAlmdWUQWkt0mBd5HlpJyChIRBBl0QlsTWdTPAUvzGxmwq6JrYljnRHYScg-LKS1MouMSprQ-eRsmlc1xnnnr6mzNQKdkixSlkVayaIJ1_WMt7K-xh-0DeZ9TVexvQmtT-Gl1QVcpIQqJVf678Znv886hx1aW5exfC3YWs5XeAHb-Xr5sphfurP1AVxyy6U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FdSDb3F99uBFsG6T7SM5yqoorouHVfZW0mYKgqyyD_HnO5N2i6II3gKdtGGmyXyTeQGcaKnQSpH5QSJjMlDIZtWhQN9KI0k9kYZ0uVVP3aTXU4OBfpiDszoXBhFd8Bme89D58u1rPuWrspaK2OOo5mEhCkMpymyt2mfAmr08d2kLS1U7JQPd6l90OIpLnZN9QPhaflNCrqvKj6PY6Zfrtf-tbB1WKxzpXZSC34A5HG7CypfqglswuJwSxcOIXTHMfr_DnTjc0Lt3jaPHHkFWj8xR5DLHHjfvdC0j0HqcGuI_mRFnQfGDd_ygV7lYrvE2PF5f9Ts3ftVIwc-lFhM_lqqQaIVGI7VRgbFZkZsiRNrBbQIkWYAEtKIkENYSHeZFngubEDYKYhm0s_YONIavQ9wFT2Q2MyIyoTVhqDOCOzFZiEVibZK1jYqb0JpxNs2rKuO88pfUWRuBTkkWKcsirWTRhNN6xltZYeMP2i3mfU1Xsb0JBzPhpdUWHKeEKxOu9R-Fe7_POoalm_59N-3e9u72YZm-o8vIvgNoTEZTPITF_H3yPB4duf_sExvfzuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Prediction%E2%80%93Correction+Methods+for+Linearly+Constrained+Time-Varying+Convex+Programs&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Simonetto%2C+Andrea&rft.date=2019-08-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=64&rft.issue=8&rft.spage=3355&rft.epage=3361&rft_id=info:doi/10.1109%2FTAC.2018.2877682&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2018_2877682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon