Metaheuristic optimization of machine learning models for strength prediction of high-performance self-compacting alkali-activated slag concrete
The present study focuses on producing high-performance eco-efficient alternatives to conventional cement-based composites. The study is divided into two parts. The first part comprises of production of high-strength self-compacting alkali-activated slag concrete (SC-AASC) with GGBFS as a primary bi...
Gespeichert in:
| Veröffentlicht in: | Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 7; H. 3; S. 2901 - 2928 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.07.2024
|
| Schlagworte: | |
| ISSN: | 2520-8160, 2520-8179 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The present study focuses on producing high-performance eco-efficient alternatives to conventional cement-based composites. The study is divided into two parts. The first part comprises of production of high-strength self-compacting alkali-activated slag concrete (SC-AASC) with GGBFS as a primary binder. The second part deals with the development of a prediction model to estimate the mechanical strength of developed concrete. In this study, to achieve high-performance SC-AASC, the alkali activator solution content varied from 220 to 190 kg/m
3
, and the AAS/binder ratio varied between 0.47 and 0.36. The SP percentage fluctuated between 6 and 7%, while the additional water percentage was maintained between 21 and 24%. The approach used to obtain the high-performance SC-AASC was found to be competent as all the mix resulted in satisfactory performance for both fresh and hardened properties. For M45 graded SC-AASC, using 200 kg/m
3
of AAS with an AAS/binder ratio of 0.39 resulted in higher strength, while for M60 grade, 190 kg/m
3
of AAS with an AAS/binder ratio of 0.36 yielded stronger concrete. Additionally, a 6% SP and 24% extra water content enhanced workability for both M45 and M60 grade SC-AASC. A database of 135 observations was developed from the experimental study. The compressive strength and split tensile strength of SC-AASC were predicted using six machine-learning algorithms. The hyperparameters of all the models were optimized using the metaheuristic spotted hyena optimization technique. Optimized XGBoost outperformed other models scoring a higher
R
2
of 0.97 and lower value of error parameters on both datasets. A comparison was drawn with previously published models to check the efficacy of the developed model. The Sobol and FAST global sensitivity analysis resulted in the AAS/binder ratio, AAS content, GGBFS content, and Curing days being most influential regarding the strength of SC-AASC. |
|---|---|
| AbstractList | The present study focuses on producing high-performance eco-efficient alternatives to conventional cement-based composites. The study is divided into two parts. The first part comprises of production of high-strength self-compacting alkali-activated slag concrete (SC-AASC) with GGBFS as a primary binder. The second part deals with the development of a prediction model to estimate the mechanical strength of developed concrete. In this study, to achieve high-performance SC-AASC, the alkali activator solution content varied from 220 to 190 kg/m
3
, and the AAS/binder ratio varied between 0.47 and 0.36. The SP percentage fluctuated between 6 and 7%, while the additional water percentage was maintained between 21 and 24%. The approach used to obtain the high-performance SC-AASC was found to be competent as all the mix resulted in satisfactory performance for both fresh and hardened properties. For M45 graded SC-AASC, using 200 kg/m
3
of AAS with an AAS/binder ratio of 0.39 resulted in higher strength, while for M60 grade, 190 kg/m
3
of AAS with an AAS/binder ratio of 0.36 yielded stronger concrete. Additionally, a 6% SP and 24% extra water content enhanced workability for both M45 and M60 grade SC-AASC. A database of 135 observations was developed from the experimental study. The compressive strength and split tensile strength of SC-AASC were predicted using six machine-learning algorithms. The hyperparameters of all the models were optimized using the metaheuristic spotted hyena optimization technique. Optimized XGBoost outperformed other models scoring a higher
R
2
of 0.97 and lower value of error parameters on both datasets. A comparison was drawn with previously published models to check the efficacy of the developed model. The Sobol and FAST global sensitivity analysis resulted in the AAS/binder ratio, AAS content, GGBFS content, and Curing days being most influential regarding the strength of SC-AASC. |
| Author | Parhi, Suraj Kumar Panda, Soumyaranjan Dwibedy, Saswat Panigrahi, Saubhagya Kumar |
| Author_xml | – sequence: 1 givenname: Suraj Kumar surname: Parhi fullname: Parhi, Suraj Kumar organization: Department of Civil Engineering, VSSUT – sequence: 2 givenname: Soumyaranjan surname: Panda fullname: Panda, Soumyaranjan organization: Department of Civil Engineering, VSSUT – sequence: 3 givenname: Saswat surname: Dwibedy fullname: Dwibedy, Saswat organization: Department of Civil Engineering, VSSUT – sequence: 4 givenname: Saubhagya Kumar surname: Panigrahi fullname: Panigrahi, Saubhagya Kumar email: skpanigrahi_ce@vssut.ac.in organization: Department of Civil Engineering, VSSUT |
| BookMark | eNp9kEtO5jAQhC0EEs8LsPIFPLTtOI8lQgyDBGID68hx2okhsSPbIMEpOPLk5wcWLFhVt1RfSVWHZNcHj4SccvjDAaqzVPBGNgyEZACyaFixQw6EEsBqXjW733cJ--QkpUcAEJUsqhoOyPstZj3ic3QpO0PDkt3s3nR2wdNg6azN6DzSCXX0zg90Dj1OidoQacoR_ZBHukTsnflCRjeMbMG4WmbtDdKEk2UmzItePWuEnp705Njme9EZe5omPVATvImY8ZjsWT0lPPnUI_Lw9_L-4h-7ubu6vji_YUY0PLOSW8N71ZVl11SVWqUXhexVY2tblqrplBK17QALULyDStjO9qoEqXsrC1vLI1Jvc00MKUW0rXH5o3eO2k0th3Yzbrsdt13HbT_GbYsVFT_QJbpZx9ffIbmF0mr2A8b2MTxHv1b8jfoPB5aS2w |
| CitedBy_id | crossref_primary_10_1007_s40831_024_00837_y crossref_primary_10_1016_j_mtcomm_2024_111047 crossref_primary_10_1038_s41598_025_91049_1 crossref_primary_10_1007_s40996_024_01718_w crossref_primary_10_1007_s44290_025_00204_0 crossref_primary_10_1038_s41598_024_62737_1 crossref_primary_10_1007_s13042_025_02776_w crossref_primary_10_1007_s40996_024_01713_1 crossref_primary_10_1016_j_conbuildmat_2024_139235 crossref_primary_10_1016_j_engappai_2025_110470 crossref_primary_10_1080_19648189_2025_2547297 crossref_primary_10_1038_s41598_025_02648_x crossref_primary_10_1016_j_conbuildmat_2024_137373 crossref_primary_10_1016_j_conbuildmat_2024_138791 crossref_primary_10_1016_j_conbuildmat_2025_142830 crossref_primary_10_3390_ma17205086 crossref_primary_10_1007_s41062_025_01886_2 crossref_primary_10_1016_j_conbuildmat_2025_141986 crossref_primary_10_1007_s41939_024_00537_w crossref_primary_10_1007_s42107_025_01457_x |
| Cites_doi | 10.1109/TKDE.2005.31 10.1007/s42107-023-00799-8 10.1016/j.conbuildmat.2023.134129 10.1016/j.conbuildmat.2020.121117 10.3390/su13010135 10.1007/978-3-642-41136-6_5 10.1016/j.jobe.2023.107086 10.3390/ma15207098 10.1016/j.conbuildmat.2023.134092 10.1007/s42107-023-00826-8 10.1371/journal.pone.0265846 10.1016/j.rineng.2023.101595 10.1038/s41598-023-39349-2 10.1016/j.mtsust.2022.100240 10.1007/s00521-023-08378-3 10.1007/s10163-023-01851-0 10.1016/j.advengsoft.2017.05.014 10.1016/j.conbuildmat.2019.117000 10.1016/j.jobe.2022.105100 10.1016/j.jclepro.2019.119250 10.1016/j.ceramint.2021.02.009 10.1007/s10115-007-0114-2 10.1016/j.jobe.2023.107325 10.1016/j.commatsci.2019.109203 10.1007/s00366-021-01385-9 10.1016/j.jmrt.2023.07.034 10.51526/kbes.2022.3.1.1-16 10.1023/A:1024974810270 10.1007/BF00994018 10.1016/j.mtcomm.2023.107485 10.1111/j.1551-2916.2010.03611.x 10.1016/j.conbuildmat.2013.08.078 10.1007/s11356-022-20863-1 10.1016/j.jmrt.2020.06.008 10.1016/j.cscm.2022.e00994 10.1007/s41939-023-00145-0 10.1007/s10098-022-02318-w 10.1016/j.matpr.2019.06.288 10.1016/j.pisc.2016.06.040 10.1016/S0169-7161(04)24011-1 10.1016/j.matpr.2022.02.506 10.1080/24709360.2017.1396742 10.1007/s10904-023-02672-2 10.1061/JMCEE7.MTENG-16669 10.1214/aos/1176348768 10.1371/journal.pone.0253006 10.1016/j.cscm.2022.e01036 10.1016/j.engstruct.2018.01.008 10.1016/j.matpr.2022.03.337 10.4028/www.scientific.net/AMM.578-579.441 10.1016/j.autcon.2020.103155 10.1016/j.jclepro.2019.02.096 10.1063/1.1680571 10.1016/j.jobe.2020.101326 10.1007/s00521-022-07427-7 10.1080/00401706.1999.10485594 10.1016/j.conbuildmat.2023.132266 10.1109/ACCESS.2019.2932769 10.1007/978-981-13-0761-4_81 10.1016/j.cscm.2023.e02581 10.1016/j.conbuildmat.2022.128174 10.3390/su13137444 10.1016/j.jobe.2023.106942 10.1016/j.scitotenv.2019.01.221 10.1007/s41939-023-00154-z 10.1016/j.cscm.2020.e00352 10.1016/j.matpr.2023.06.338 10.1002/wics.2 10.3390/ma15051868 10.1023/B:AIRE.0000045502.10941.a9 10.1016/j.mtcomm.2023.107356 10.1016/j.cesys.2021.100047 10.1007/978-1-4302-5990-9_4 10.1016/j.jobe.2023.106521 10.1007/s41939-023-00150-3 10.1016/j.conbuildmat.2023.132814 10.1016/j.clema.2022.100111 10.1016/j.conbuildmat.2018.03.166 10.1007/s42107-023-00698-y 10.1016/j.jobe.2022.104062 10.1007/s00366-020-01003-0 10.1016/j.mattod.2023.01.017 10.1145/130385.130401 10.1109/ICTKE.2017.8259629 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-023-00349-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| EndPage | 2928 |
| ExternalDocumentID | 10_1007_s41939_023_00349_4 |
| GroupedDBID | -EM 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c291t-61fc1d5b66b977566bd243d59f8f6659b5528fb0e4051b072fbfd5603adf34f83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173639200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Sat Nov 29 03:23:31 EST 2025 Tue Nov 18 22:39:03 EST 2025 Fri Feb 21 02:40:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | High-strength Self-compacting Sensitivity analysis GGBFS XGBoost Machine learning Alkali-activated concrete SHO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-61fc1d5b66b977566bd243d59f8f6659b5528fb0e4051b072fbfd5603adf34f83 |
| PageCount | 28 |
| ParticipantIDs | crossref_citationtrail_10_1007_s41939_023_00349_4 crossref_primary_10_1007_s41939_023_00349_4 springer_journals_10_1007_s41939_023_00349_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Saltelli, Tarantola, Chan (CR76) 1999; 41 Géron (CR38) 2019 Muraleedharan, Nadir (CR50) 2021; 47 Dwibedy, Panigrahi (CR32) 2023; 409 Pradhan, Panda, Kumar Parhi, Kumar Panigrahi (CR66) 2022 Ahmed, Mohammed, Faraj, Abdalla, Qaidi, Sor, Mohammed (CR9) 2023; 35 Parhi, Patro (CR57) 2023 Zhang, Bai, Zhang (CR88) 2023; 6 Dhiman, Kumar, Yadav, Yadav, Bansal, Deep, Kim (CR28) 2019 Nhat-Duc (CR51) 2023; 6 CR33 Pradhan, Panda, Kumar Parhi, Kumar Panigrahi (CR65) 2022; 344 Ahmed, Mohammed, Mohammed (CR6) 2022; 34 Parhi, Patro (CR58) 2023; 71 Cortes, Vapnik (CR22) 1995; 20 Chen (CR18) 2017; 1 Oliveira, Tutikian, Milanes, Silva (CR54) 2020; 248 Duan, Asteris, Nguyen, Bui, Moayedi (CR31) 2021; 37 Xiong, Cui, Liu, Zhao, Hu, Hu (CR87) 2020; 171 Parhi, Panigrahi (CR56) 2023 Pradhan, Panda, Kumar Mandal, Kumar Panigrahi (CR68) 2023 Dou, Yunus, Tien Bui, Merghadi, Sahana, Zhu, Chen, Khosravi, Yang, Pham (CR30) 2019; 662 Qaidi, Yahia, Tayeh, Unis, Faraj, Mohammed (CR72) 2022; 20 Chen, Amin, Iftikhar, Ahmad, Althoey, Alsharari (CR19) 2023; 76 Faraj, Mohammed, Mohammed, Omer, Ahmed (CR34) 2022; 38 Iftikhar, Alih, Vafaei, Javed, Rehman, Abdullaev, Tamam, Khan, Hassan (CR41) 2023; 13 Parhi, Dwibedy, Panda, Panigrahi (CR59) 2023 Singh, Patro, Parhi (CR79) 2023 Oliveira, Izquierdo, Querol, Lieberman, Saikia, Silva (CR53) 2019; 219 Patel, Shah (CR61) 2018; 171 Wang, Bah, Hammad (CR85) 2019; 7 Schapire, Schölkopf, Luo, Vovk (CR77) 2013 Awad, Khanna, Awad, Khanna (CR14) 2015 Kang, Yoo, Gupta (CR44) 2021; 266 Ahmed, Mohammed, Mohammed (CR4) 2022; 49 Shahmansouri, Bengar, Ghanbari (CR78) 2020; 31 Dong, Huang, Lehane, Ma (CR29) 2020; 114 Pradhan, Panda, Dwibedy, Pradhan, Panigrahi (CR67) 2023 Terrell, Scott (CR82) 1992; 20 Angiulli, Pizzuti (CR13) 2005; 17 Memon, Nuruddin, Demie, Shafiq (CR48) 2012; 8 Faraj, Mohammed, Omer, Ahmed (CR35) 2022; 24 Pradhan, Panda, Parhi, Pradhan, Panigrahi (CR69) 2024; 36 Unis Ahmed, Mahmood, Muhammad, Faraj, Qaidi, Hamah Sor, Mohammed, Mohammed (CR83) 2022; 5 Alsharari, Iftikhar, Uddin, Deifalla (CR12) 2023; 20 Kim, Park (CR45) 2014; 578–579 Ahmed, Mohammed, Mohammed (CR3) 2022; 17 Qaidi, Tayeh, Isleem, de Azevedo, Ahmed, Emad (CR70) 2022; 16 Hodge, Austin (CR39) 2004; 22 Qaidi, Najm, Abed, Ahmed, Al Dughaishi, Al Lawati, Sabri, Alkhatib, Milad (CR71) 2022; 15 Saini, Vattipalli (CR74) 2020; 12 Ahmed, Mohammed, Faraj, Qaidi, Mohammed (CR5) 2022; 16 CR17 Chou, Pham (CR21) 2013; 49 Cukier, Fortuin, Shuler, Petschek, Schaibly (CR23) 1973; 59 CR55 Kumar Dash, Kumar Parhi, Kumar Patro, Panigrahi (CR46) 2023; 400 Chen, Iftikhar, Ahmad, Dodo, Abuhussain, Althoey, Sufian (CR20) 2023; 37 Wu, Kumar, Ross Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Yu, Zhou, Steinbach, Hand, Steinberg (CR86) 2008; 14 Faridmehr, Nehdi, Huseien, Baghban, Sam, Algaifi (CR36) 2021; 13 Alsalman, Assi, Kareem, Carter, Ziehl (CR11) 2021; 3 Mangalathu, Jeon (CR47) 2018; 160 Dash, Parhi, Patro, Panigrahi (CR25) 2023; 37 Smirnova, Kazanskaya, Koplík, Tan, Gu (CR80) 2021; 13 Unis Ahmed, Mohammed, Mohammed (CR84) 2023; 394 Ahmed, Mohammed, Mohammed (CR10) 2023; 75 Hu (CR40) 2023; 6 Feng, Liu, Wang, Chen, Chang, Wei, Jiang (CR37) 2020; 230 Pradhan, Dwibedy, Pradhan, Panda, Panigrahi (CR63) 2022; 59 Qureshi, Alyami, Nawaz, Hakeem, Aslam, Iftikhar, Gamil (CR73) 2023; 19 Zou, Wang, Nasir Amin, Iftikhar, Khan, Ali, Althoey (CR89) 2023; 409 Nuruddin, Demie, Memon, Shafiq (CR52) 2011; 75 Basilio, Goliatt (CR16) 2022; 3 Petrovskiy (CR62) 2003; 29 Sakulich, Miller, Barsoum (CR75) 2010; 93 Awoyera, Kirgiz, Viloria, Ovallos-Gazabon (CR15) 2020; 9 Ahmed, Abdalla, Mohammed, Mohammed, Mosavi (CR2) 2022; 15 Dhiman, Kumar (CR27) 2017; 114 CR26 Iftikhar, Alih, Vafaei, Javed, Ali, Gamil, Rehman (CR42) 2023; 25 Das, Panda, Sahoo, Panigrahi (CR24) 2023; 62 Ahmed, Mohammed, Mohammed (CR7) 2022; 29 Parveen, Zaidi, Danish (CR60) 2016; 8 Sutton, Rao, Wegman, Solka (CR81) 2005 Ahmed, Mohammed, Mohammed, Faraj (CR1) 2021; 16 Ahmed, Mohammed, Mohammed (CR8) 2023 Pradhan, Panda, Kumar Parhi, Kumar Panigrahi (CR64) 2022 Jithendra, Elavenil (CR43) 2019; 18 Morgenthaler (CR49) 2009; 1 SK Parhi (349_CR56) 2023 I Faridmehr (349_CR36) 2021; 13 FA Memon (349_CR48) 2012; 8 HJ Qureshi (349_CR73) 2023; 19 349_CR17 SMA Qaidi (349_CR70) 2022; 16 PO Awoyera (349_CR15) 2020; 9 349_CR55 J Pradhan (349_CR67) 2023 C Cortes (349_CR22) 1995; 20 S Morgenthaler (349_CR49) 2009; 1 A Alsalman (349_CR11) 2021; 3 SK Parhi (349_CR59) 2023 HU Ahmed (349_CR9) 2023; 35 P Pradhan (349_CR66) 2022 F Alsharari (349_CR12) 2023; 20 P Pradhan (349_CR63) 2022; 59 RH Faraj (349_CR34) 2022; 38 HU Ahmed (349_CR10) 2023; 75 HU Ahmed (349_CR6) 2022; 34 Z Xiong (349_CR87) 2020; 171 M Muraleedharan (349_CR50) 2021; 47 A Géron (349_CR38) 2019 AA Shahmansouri (349_CR78) 2020; 31 H Unis Ahmed (349_CR84) 2023; 394 P Pradhan (349_CR64) 2022 SK Parhi (349_CR57) 2023 S Singh (349_CR79) 2023 GR Terrell (349_CR82) 1992; 20 S Qaidi (349_CR71) 2022; 15 N Parveen (349_CR60) 2016; 8 SK Parhi (349_CR58) 2023; 71 YJ Patel (349_CR61) 2018; 171 J-S Chou (349_CR21) 2013; 49 MLS Oliveira (349_CR54) 2020; 248 M Awad (349_CR14) 2015 HU Ahmed (349_CR5) 2022; 16 R Das (349_CR24) 2023; 62 RI Cukier (349_CR23) 1973; 59 SA Basilio (349_CR16) 2022; 3 W Dong (349_CR29) 2020; 114 J Pradhan (349_CR68) 2023 G Dhiman (349_CR27) 2017; 114 J Dou (349_CR30) 2019; 662 D-C Feng (349_CR37) 2020; 230 V Hodge (349_CR39) 2004; 22 J Pradhan (349_CR69) 2024; 36 J Duan (349_CR31) 2021; 37 S Dwibedy (349_CR32) 2023; 409 HU Ahmed (349_CR2) 2022; 15 Z Chen (349_CR19) 2023; 76 C Jithendra (349_CR43) 2019; 18 349_CR33 P Kumar Dash (349_CR46) 2023; 400 G Dhiman (349_CR28) 2019 M-C Kang (349_CR44) 2021; 266 JS Kim (349_CR45) 2014; 578–579 AR Sakulich (349_CR75) 2010; 93 H Wang (349_CR85) 2019; 7 HU Ahmed (349_CR8) 2023 F Angiulli (349_CR13) 2005; 17 HU Ahmed (349_CR7) 2022; 29 RH Faraj (349_CR35) 2022; 24 RE Schapire (349_CR77) 2013 Z Chen (349_CR20) 2023; 37 B Iftikhar (349_CR41) 2023; 13 Y Zhang (349_CR88) 2023; 6 MI Petrovskiy (349_CR62) 2003; 29 MLS Oliveira (349_CR53) 2019; 219 PK Dash (349_CR25) 2023; 37 H Unis Ahmed (349_CR83) 2022; 5 CD Sutton (349_CR81) 2005 349_CR26 HU Ahmed (349_CR3) 2022; 17 B Zou (349_CR89) 2023; 409 HU Ahmed (349_CR1) 2021; 16 HU Ahmed (349_CR4) 2022; 49 S Mangalathu (349_CR47) 2018; 160 H Nhat-Duc (349_CR51) 2023; 6 X Wu (349_CR86) 2008; 14 A Saltelli (349_CR76) 1999; 41 O Smirnova (349_CR80) 2021; 13 S Qaidi (349_CR72) 2022; 20 BC Iftikhar (349_CR42) 2023; 25 P Pradhan (349_CR65) 2022; 344 X Hu (349_CR40) 2023; 6 Y-C Chen (349_CR18) 2017; 1 F Nuruddin (349_CR52) 2011; 75 G Saini (349_CR74) 2020; 12 |
| References_xml | – volume: 17 start-page: 203 issue: 2 year: 2005 end-page: 215 ident: CR13 article-title: Outlier mining in large high-dimensional data sets publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.31 – year: 2023 ident: CR56 article-title: Alkali–silica reaction expansion prediction in concrete using hybrid metaheuristic optimized machine learning algorithms publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00799-8 – volume: 409 year: 2023 ident: CR32 article-title: Factors affecting the structural performance of geopolymer concrete beam composites publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134129 – volume: 266 year: 2021 ident: CR44 article-title: Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – volume: 13 issue: 1 year: 2021 ident: CR80 article-title: Concrete Based on clinker-free cement: selecting the functional unit for environmental assessment publication-title: Sustainability doi: 10.3390/su13010135 – start-page: 37 year: 2013 end-page: 52 ident: CR77 article-title: Explaining AdaBoost publication-title: Empirical inference: festschrift in honor of vladimir N. Vapnik doi: 10.1007/978-3-642-41136-6_5 – year: 2023 ident: CR59 article-title: A comprehensive study on controlled low strength material publication-title: J Build Eng doi: 10.1016/j.jobe.2023.107086 – volume: 15 issue: 20 year: 2022 ident: CR71 article-title: Fly ash-based geopolymer composites: a review of the compressive strength and microstructure analysis publication-title: Materials doi: 10.3390/ma15207098 – volume: 409 year: 2023 ident: CR89 article-title: Artificial intelligence-based optimized models for predicting the slump and compressive strength of sustainable alkali-derived concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134092 – year: 2023 ident: CR57 article-title: Compressive strength prediction of PET fiber-reinforced concrete using Dolphin echolocation optimized decision tree-based machine learning algorithms publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00826-8 – volume: 17 issue: 5 year: 2022 ident: CR3 article-title: Soft computing models to predict the compressive strength of GGBS/FA- geopolymer concrete publication-title: PLoS One doi: 10.1371/journal.pone.0265846 – volume: 20 year: 2023 ident: CR12 article-title: Data-driven strategy for evaluating the response of eco-friendly concrete at elevated temperatures for fire resistance construction publication-title: Results Eng doi: 10.1016/j.rineng.2023.101595 – volume: 13 issue: 1 year: 2023 ident: CR41 article-title: Predicting compressive strength of eco-friendly plastic sand paver blocks using gene expression and artificial intelligence programming publication-title: Sci Rep doi: 10.1038/s41598-023-39349-2 – volume: 20 year: 2022 ident: CR72 article-title: 3D printed geopolymer composites: a review publication-title: Mater Today Sustain doi: 10.1016/j.mtsust.2022.100240 – volume: 35 start-page: 12453 issue: 17 year: 2023 end-page: 12479 ident: CR9 article-title: Innovative modeling techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08378-3 – year: 2023 ident: CR67 article-title: Production of durable high-strength self-compacting geopolymer concrete with GGBFS as a precursor publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-023-01851-0 – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: CR27 article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.05.014 – volume: 230 year: 2020 ident: CR37 article-title: Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – volume: 59 year: 2022 ident: CR63 article-title: Durability characteristics of geopolymer concrete—progress and perspectives publication-title: J Build Eng doi: 10.1016/j.jobe.2022.105100 – volume: 248 year: 2020 ident: CR54 article-title: Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119250 – volume: 47 start-page: 13257 issue: 10 year: 2021 end-page: 13279 ident: CR50 article-title: Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: a review publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.02.009 – volume: 14 start-page: 1 issue: 1 year: 2008 end-page: 37 ident: CR86 article-title: Top 10 algorithms in data mining publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0114-2 – volume: 76 year: 2023 ident: CR19 article-title: Predictive modelling for the acid resistance of cement-based composites modified with eggshell and glass waste for sustainable and resilient building materials publication-title: J Build Eng doi: 10.1016/j.jobe.2023.107325 – volume: 171 year: 2020 ident: CR87 article-title: Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2019.109203 – volume: 38 start-page: 2365 issue: 3 year: 2022 end-page: 2388 ident: CR34 article-title: Systematic multiscale models to predict the compressive strength of self-compacting concretes modified with nanosilica at different curing ages publication-title: Eng Comput doi: 10.1007/s00366-021-01385-9 – volume: 25 start-page: 5705 year: 2023 end-page: 5719 ident: CR42 article-title: A machine learning-based genetic programming approach for the sustainable production of plastic sand paver blocks publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.07.034 – volume: 3 start-page: 1 issue: 1 year: 2022 ident: CR16 article-title: Gradient boosting hybridized with exponential natural evolution strategies for estimating the strength of geopolymer self-compacting concrete publication-title: Knowl Based Eng Sci doi: 10.51526/kbes.2022.3.1.1-16 – volume: 29 start-page: 228 issue: 4 year: 2003 end-page: 237 ident: CR62 article-title: Outlier detection algorithms in data mining systems publication-title: Program Comput Softw doi: 10.1023/A:1024974810270 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR22 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 37 year: 2023 ident: CR25 article-title: Influence of chemical constituents of binder and activator in predicting compressive strength of fly ash-based geopolymer concrete using firefly-optimized hybrid ensemble machine learning model publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107485 – volume: 93 start-page: 1741 issue: 6 year: 2010 end-page: 1748 ident: CR75 article-title: Chemical and microstructural characterization of 20-month-old alkali-activated slag cements publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2010.03611.x – volume: 49 start-page: 554 year: 2013 end-page: 563 ident: CR21 article-title: Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.08.078 – year: 2019 ident: CR38 publication-title: Hands-on machine learning with scikit-learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems – volume: 29 start-page: 71232 issue: 47 year: 2022 end-page: 71256 ident: CR7 article-title: Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-20863-1 – volume: 9 start-page: 9016 issue: 4 year: 2020 end-page: 9028 ident: CR15 article-title: Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques publication-title: J Mark Res doi: 10.1016/j.jmrt.2020.06.008 – volume: 16 year: 2022 ident: CR70 article-title: Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: a review publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2022.e00994 – volume: 6 start-page: 389 issue: 3 year: 2023 end-page: 400 ident: CR88 article-title: Compressive strength estimation of ultra-great workability concrete using hybrid algorithms publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00145-0 – volume: 24 start-page: 2253 issue: 7 year: 2022 end-page: 2281 ident: CR35 article-title: Soft computing techniques to predict the compressive strength of green self-compacting concrete incorporating recycled plastic aggregates and industrial waste ashes publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-022-02318-w – volume: 18 start-page: 148 year: 2019 end-page: 154 ident: CR43 article-title: Role of superplasticizer on GGBS based geopolymer concrete under ambient curing publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.06.288 – volume: 8 start-page: 629 year: 2016 end-page: 631 ident: CR60 article-title: Support vector regression model for predicting the sorption capacity of lead (II) publication-title: Perspect Sci doi: 10.1016/j.pisc.2016.06.040 – start-page: 303 year: 2005 end-page: 329 ident: CR81 article-title: 11—Classification and regression trees, bagging, and boosting publication-title: Handbook of statistics doi: 10.1016/S0169-7161(04)24011-1 – year: 2022 ident: CR64 article-title: Effect of critical parameters on the fresh properties of Self Compacting geopolymer concrete publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.02.506 – volume: 1 start-page: 161 issue: 1 year: 2017 end-page: 187 ident: CR18 article-title: A tutorial on kernel density estimation and recent advances publication-title: Biostat Epidemiol doi: 10.1080/24709360.2017.1396742 – year: 2023 ident: CR8 article-title: Effectiveness of silicon dioxide nanoparticles (Nano SiO ) on the internal structures, electrical conductivity, and elevated temperature behaviors of geopolymer concrete composites publication-title: J Inorg Organomet Polym Mater doi: 10.1007/s10904-023-02672-2 – volume: 36 start-page: 04023578 issue: 2 year: 2024 ident: CR69 article-title: GGBFS-based self-compacting geopolymer concrete with optimized mix parameters established on fresh, mechanical, and durability characteristics publication-title: J Mater Civ Eng doi: 10.1061/JMCEE7.MTENG-16669 – ident: CR26 – volume: 20 start-page: 1236 issue: 3 year: 1992 end-page: 1265 ident: CR82 article-title: Variable kernel density estimation publication-title: Ann Stat doi: 10.1214/aos/1176348768 – volume: 16 issue: 6 year: 2021 ident: CR1 article-title: Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes publication-title: PLoS One doi: 10.1371/journal.pone.0253006 – volume: 16 year: 2022 ident: CR5 article-title: Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2022.e01036 – volume: 160 start-page: 85 year: 2018 end-page: 94 ident: CR47 article-title: Classification of failure mode and prediction of shear strength for reinforced concrete beam-column joints using machine learning techniques publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.01.008 – year: 2022 ident: CR66 article-title: Variation in fresh and mechanical properties of GGBFS based self-compacting geopolymer concrete in the presence of NCA and RCA publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.03.337 – volume: 578–579 start-page: 441 year: 2014 end-page: 444 ident: CR45 article-title: An experimental evaluation of development length of reinforcements embedded in geopolymer concrete publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.578-579.441 – volume: 114 year: 2020 ident: CR29 article-title: XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring publication-title: Autom Constr doi: 10.1016/j.autcon.2020.103155 – volume: 219 start-page: 236 year: 2019 end-page: 243 ident: CR53 article-title: Nanoparticles from construction wastes: a problem to health and the environment publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.02.096 – volume: 59 start-page: 3873 issue: 8 year: 1973 end-page: 3878 ident: CR23 article-title: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory publication-title: J Chem Phys doi: 10.1063/1.1680571 – volume: 31 year: 2020 ident: CR78 article-title: Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method publication-title: J Build Eng doi: 10.1016/j.jobe.2020.101326 – volume: 34 start-page: 17853 issue: 20 year: 2022 end-page: 17876 ident: CR6 article-title: Multivariable models including artificial neural network and M5P-tree to forecast the stress at the failure of alkali-activated concrete at ambient curing condition and various mixture proportions publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07427-7 – ident: CR33 – volume: 41 start-page: 39 issue: 1 year: 1999 end-page: 56 ident: CR76 article-title: A Quantitative model-independent method for global sensitivity analysis of model output publication-title: Technometrics doi: 10.1080/00401706.1999.10485594 – volume: 394 year: 2023 ident: CR84 article-title: Fresh and mechanical performances of recycled plastic aggregate geopolymer concrete modified with Nano-silica: Experimental and computational investigation publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.132266 – volume: 7 start-page: 107964 year: 2019 end-page: 108000 ident: CR85 article-title: Progress in outlier detection techniques: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932769 – start-page: 857 year: 2019 end-page: 867 ident: CR28 article-title: Spotted hyena optimizer for solving complex and non-linear constrained engineering problems publication-title: Harmony search and nature inspired optimization algorithms doi: 10.1007/978-981-13-0761-4_81 – volume: 19 year: 2023 ident: CR73 article-title: Prediction of compressive strength of two-stage (preplaced aggregate) concrete using gene expression programming and random forest publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2023.e02581 – volume: 344 year: 2022 ident: CR65 article-title: Factors affecting production and properties of self-compacting geopolymer concrete—a review publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.128174 – volume: 13 issue: 13 year: 2021 ident: CR36 article-title: Experimental and informational modeling study of sustainable self-compacting geopolymer concrete publication-title: Sustainability doi: 10.3390/su13137444 – volume: 75 start-page: 187 year: 2011 end-page: 194 ident: CR52 article-title: Effect of superplasticizer and NaOH molarity on workability, compressive strength and microstructure properties of self-compacting geopolymer concrete publication-title: World Acad Sci Eng Technol – volume: 75 year: 2023 ident: CR10 article-title: Engineering properties of geopolymer concrete composites incorporated recycled plastic aggregates modified with nano-silica publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106942 – volume: 662 start-page: 332 year: 2019 end-page: 346 ident: CR30 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.221 – volume: 6 start-page: 415 issue: 3 year: 2023 end-page: 430 ident: CR51 article-title: Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using a novel regularized deep learning approach publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00154-z – volume: 12 year: 2020 ident: CR74 article-title: Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2020.e00352 – year: 2023 ident: CR68 article-title: Influence of GGBFS-based blended precursor on fresh properties of self-compacting geopolymer concrete under ambient temperature publication-title: Mater Today Proc doi: 10.1016/j.matpr.2023.06.338 – volume: 1 start-page: 33 issue: 1 year: 2009 end-page: 44 ident: CR49 article-title: Exploratory data analysis publication-title: Wires Comput Stat doi: 10.1002/wics.2 – volume: 15 issue: 5 year: 2022 ident: CR2 article-title: Statistical methods for modeling the compressive strength of geopolymer mortar publication-title: Materials doi: 10.3390/ma15051868 – volume: 22 start-page: 85 issue: 2 year: 2004 end-page: 126 ident: CR39 article-title: A survey of outlier detection methodologies publication-title: Artif Intell Rev doi: 10.1023/B:AIRE.0000045502.10941.a9 – ident: CR17 – volume: 37 year: 2023 ident: CR20 article-title: Strength evaluation of eco-friendly waste-derived self-compacting concrete via interpretable genetic-based machine learning models publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107356 – volume: 3 year: 2021 ident: CR11 article-title: Energy and CO emission assessments of alkali-activated concrete and ordinary Portland cement concrete: a comparative analysis of different grades of concrete publication-title: Clean Environ Syst doi: 10.1016/j.cesys.2021.100047 – start-page: 67 year: 2015 end-page: 80 ident: CR14 article-title: Support vector regression publication-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers doi: 10.1007/978-1-4302-5990-9_4 – volume: 71 year: 2023 ident: CR58 article-title: Prediction of compressive strength of geopolymer concrete using a hybrid ensemble of grey wolf optimized machine learning estimators publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106521 – volume: 6 start-page: 357 issue: 3 year: 2023 end-page: 370 ident: CR40 article-title: Evaluation of compressive strength of the HPC produced with admixtures by a novel hybrid SVR model publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00150-3 – volume: 400 year: 2023 ident: CR46 article-title: Efficient machine learning algorithm with enhanced cat swarm optimization for prediction of compressive strength of GGBS-based geopolymer concrete at elevated temperature publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.132814 – ident: CR55 – volume: 5 year: 2022 ident: CR83 article-title: Geopolymer concrete as a cleaner construction material: an overview on materials and structural performances publication-title: Clean Mater doi: 10.1016/j.clema.2022.100111 – volume: 62 start-page: 1 year: 2023 end-page: 11 ident: CR24 article-title: Effect of superplasticizer types and dosage on the flow characteristics of GGBFS based self-compacting geopolymer concrete publication-title: Mater Today Proc – volume: 171 start-page: 654 year: 2018 end-page: 662 ident: CR61 article-title: Enhancement of the properties of ground granulated blast furnace slag based self compacting geopolymer concrete by incorporating rice husk ash publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.03.166 – year: 2023 ident: CR79 article-title: Evolutionary optimization of machine learning algorithm hyperparameters for strength prediction of high-performance concrete publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00698-y – volume: 49 year: 2022 ident: CR4 article-title: The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review publication-title: J Build Eng doi: 10.1016/j.jobe.2022.104062 – volume: 37 start-page: 3329 issue: 4 year: 2021 end-page: 3346 ident: CR31 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Eng Comput doi: 10.1007/s00366-020-01003-0 – volume: 8 start-page: 407 year: 2012 end-page: 414 ident: CR48 article-title: Effect of superplasticizer and extra water on workability and compressive strength of self-compacting geopolymer concrete publication-title: Res J Appl Sci Eng Technol – volume: 47 start-page: 13257 issue: 10 year: 2021 ident: 349_CR50 publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.02.009 – volume: 171 start-page: 654 year: 2018 ident: 349_CR61 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2018.03.166 – ident: 349_CR26 – volume-title: Hands-on machine learning with scikit-learn, Keras, and TensorFlow: concepts, tools, and techniques to build intelligent systems year: 2019 ident: 349_CR38 – volume: 8 start-page: 407 year: 2012 ident: 349_CR48 publication-title: Res J Appl Sci Eng Technol – volume: 41 start-page: 39 issue: 1 year: 1999 ident: 349_CR76 publication-title: Technometrics doi: 10.1080/00401706.1999.10485594 – volume: 20 year: 2022 ident: 349_CR72 publication-title: Mater Today Sustain doi: 10.1016/j.mtsust.2022.100240 – volume: 12 year: 2020 ident: 349_CR74 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2020.e00352 – volume: 20 year: 2023 ident: 349_CR12 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101595 – volume: 409 year: 2023 ident: 349_CR32 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134129 – volume: 171 year: 2020 ident: 349_CR87 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2019.109203 – volume: 6 start-page: 389 issue: 3 year: 2023 ident: 349_CR88 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00145-0 – volume: 38 start-page: 2365 issue: 3 year: 2022 ident: 349_CR34 publication-title: Eng Comput doi: 10.1007/s00366-021-01385-9 – volume: 1 start-page: 161 issue: 1 year: 2017 ident: 349_CR18 publication-title: Biostat Epidemiol doi: 10.1080/24709360.2017.1396742 – year: 2023 ident: 349_CR59 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.107086 – volume: 75 year: 2023 ident: 349_CR10 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106942 – volume: 114 year: 2020 ident: 349_CR29 publication-title: Autom Constr doi: 10.1016/j.autcon.2020.103155 – year: 2023 ident: 349_CR57 publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00826-8 – volume: 36 start-page: 04023578 issue: 2 year: 2024 ident: 349_CR69 publication-title: J Mater Civ Eng doi: 10.1061/JMCEE7.MTENG-16669 – volume: 19 year: 2023 ident: 349_CR73 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2023.e02581 – volume: 62 start-page: 1 year: 2023 ident: 349_CR24 publication-title: Mater Today Proc doi: 10.1016/j.mattod.2023.01.017 – volume: 17 start-page: 203 issue: 2 year: 2005 ident: 349_CR13 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.31 – volume: 266 year: 2021 ident: 349_CR44 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.121117 – volume: 16 year: 2022 ident: 349_CR5 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2022.e01036 – volume: 49 year: 2022 ident: 349_CR4 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.104062 – volume: 34 start-page: 17853 issue: 20 year: 2022 ident: 349_CR6 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07427-7 – volume: 76 year: 2023 ident: 349_CR19 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.107325 – volume: 6 start-page: 415 issue: 3 year: 2023 ident: 349_CR51 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00154-z – volume: 16 year: 2022 ident: 349_CR70 publication-title: Case Stud Constr Mater doi: 10.1016/j.cscm.2022.e00994 – volume: 1 start-page: 33 issue: 1 year: 2009 ident: 349_CR49 publication-title: Wires Comput Stat doi: 10.1002/wics.2 – volume: 71 year: 2023 ident: 349_CR58 publication-title: J Build Eng doi: 10.1016/j.jobe.2023.106521 – start-page: 303 volume-title: Handbook of statistics year: 2005 ident: 349_CR81 doi: 10.1016/S0169-7161(04)24011-1 – volume: 409 year: 2023 ident: 349_CR89 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134092 – volume: 93 start-page: 1741 issue: 6 year: 2010 ident: 349_CR75 publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2010.03611.x – year: 2023 ident: 349_CR56 publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00799-8 – volume: 17 issue: 5 year: 2022 ident: 349_CR3 publication-title: PLoS One doi: 10.1371/journal.pone.0265846 – volume: 37 year: 2023 ident: 349_CR20 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107356 – volume: 25 start-page: 5705 year: 2023 ident: 349_CR42 publication-title: J Mater Res Technol doi: 10.1016/j.jmrt.2023.07.034 – volume: 13 issue: 1 year: 2021 ident: 349_CR80 publication-title: Sustainability doi: 10.3390/su13010135 – volume: 3 year: 2021 ident: 349_CR11 publication-title: Clean Environ Syst doi: 10.1016/j.cesys.2021.100047 – volume: 14 start-page: 1 issue: 1 year: 2008 ident: 349_CR86 publication-title: Knowl Inf Syst doi: 10.1007/s10115-007-0114-2 – volume: 13 issue: 1 year: 2023 ident: 349_CR41 publication-title: Sci Rep doi: 10.1038/s41598-023-39349-2 – volume: 7 start-page: 107964 year: 2019 ident: 349_CR85 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2932769 – ident: 349_CR17 doi: 10.1145/130385.130401 – volume: 24 start-page: 2253 issue: 7 year: 2022 ident: 349_CR35 publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-022-02318-w – volume: 219 start-page: 236 year: 2019 ident: 349_CR53 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.02.096 – volume: 8 start-page: 629 year: 2016 ident: 349_CR60 publication-title: Perspect Sci doi: 10.1016/j.pisc.2016.06.040 – volume: 400 year: 2023 ident: 349_CR46 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.132814 – year: 2023 ident: 349_CR68 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2023.06.338 – volume: 15 issue: 5 year: 2022 ident: 349_CR2 publication-title: Materials doi: 10.3390/ma15051868 – year: 2022 ident: 349_CR66 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.03.337 – ident: 349_CR55 doi: 10.1109/ICTKE.2017.8259629 – start-page: 37 volume-title: Empirical inference: festschrift in honor of vladimir N. Vapnik year: 2013 ident: 349_CR77 doi: 10.1007/978-3-642-41136-6_5 – volume: 13 issue: 13 year: 2021 ident: 349_CR36 publication-title: Sustainability doi: 10.3390/su13137444 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 349_CR22 publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 18 start-page: 148 year: 2019 ident: 349_CR43 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2019.06.288 – year: 2023 ident: 349_CR67 publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-023-01851-0 – ident: 349_CR33 – volume: 6 start-page: 357 issue: 3 year: 2023 ident: 349_CR40 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00150-3 – volume: 15 issue: 20 year: 2022 ident: 349_CR71 publication-title: Materials doi: 10.3390/ma15207098 – volume: 662 start-page: 332 year: 2019 ident: 349_CR30 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.01.221 – year: 2023 ident: 349_CR79 publication-title: Asian J Civ Eng doi: 10.1007/s42107-023-00698-y – volume: 35 start-page: 12453 issue: 17 year: 2023 ident: 349_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08378-3 – volume: 248 year: 2020 ident: 349_CR54 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119250 – volume: 29 start-page: 228 issue: 4 year: 2003 ident: 349_CR62 publication-title: Program Comput Softw doi: 10.1023/A:1024974810270 – year: 2023 ident: 349_CR8 publication-title: J Inorg Organomet Polym Mater doi: 10.1007/s10904-023-02672-2 – volume: 9 start-page: 9016 issue: 4 year: 2020 ident: 349_CR15 publication-title: J Mark Res doi: 10.1016/j.jmrt.2020.06.008 – volume: 22 start-page: 85 issue: 2 year: 2004 ident: 349_CR39 publication-title: Artif Intell Rev doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume: 3 start-page: 1 issue: 1 year: 2022 ident: 349_CR16 publication-title: Knowl Based Eng Sci doi: 10.51526/kbes.2022.3.1.1-16 – volume: 37 start-page: 3329 issue: 4 year: 2021 ident: 349_CR31 publication-title: Eng Comput doi: 10.1007/s00366-020-01003-0 – volume: 578–579 start-page: 441 year: 2014 ident: 349_CR45 publication-title: Appl Mech Mater doi: 10.4028/www.scientific.net/AMM.578-579.441 – volume: 29 start-page: 71232 issue: 47 year: 2022 ident: 349_CR7 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-20863-1 – volume: 59 year: 2022 ident: 349_CR63 publication-title: J Build Eng doi: 10.1016/j.jobe.2022.105100 – start-page: 67 volume-title: Efficient learning machines: theories, concepts, and applications for engineers and system designers year: 2015 ident: 349_CR14 doi: 10.1007/978-1-4302-5990-9_4 – volume: 59 start-page: 3873 issue: 8 year: 1973 ident: 349_CR23 publication-title: J Chem Phys doi: 10.1063/1.1680571 – volume: 5 year: 2022 ident: 349_CR83 publication-title: Clean Mater doi: 10.1016/j.clema.2022.100111 – volume: 230 year: 2020 ident: 349_CR37 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.117000 – volume: 20 start-page: 1236 issue: 3 year: 1992 ident: 349_CR82 publication-title: Ann Stat doi: 10.1214/aos/1176348768 – volume: 394 year: 2023 ident: 349_CR84 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.132266 – volume: 160 start-page: 85 year: 2018 ident: 349_CR47 publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.01.008 – volume: 344 year: 2022 ident: 349_CR65 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.128174 – volume: 16 issue: 6 year: 2021 ident: 349_CR1 publication-title: PLoS One doi: 10.1371/journal.pone.0253006 – volume: 31 year: 2020 ident: 349_CR78 publication-title: J Build Eng doi: 10.1016/j.jobe.2020.101326 – start-page: 857 volume-title: Harmony search and nature inspired optimization algorithms year: 2019 ident: 349_CR28 doi: 10.1007/978-981-13-0761-4_81 – year: 2022 ident: 349_CR64 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2022.02.506 – volume: 114 start-page: 48 year: 2017 ident: 349_CR27 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.05.014 – volume: 75 start-page: 187 year: 2011 ident: 349_CR52 publication-title: World Acad Sci Eng Technol – volume: 49 start-page: 554 year: 2013 ident: 349_CR21 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2013.08.078 – volume: 37 year: 2023 ident: 349_CR25 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2023.107485 |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.3833554 |
| Snippet | The present study focuses on producing high-performance eco-efficient alternatives to conventional cement-based composites. The study is divided into two... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2901 |
| SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
| Title | Metaheuristic optimization of machine learning models for strength prediction of high-performance self-compacting alkali-activated slag concrete |
| URI | https://link.springer.com/article/10.1007/s41939-023-00349-4 |
| Volume | 7 |
| WOSCitedRecordID | wos001173639200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2520-8179 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: P5Z dateStart: 20240701 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2520-8179 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: M7S dateStart: 20240701 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2520-8179 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: BENPR dateStart: 20240701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWAcoADO2KXD9zAUuJszhEQFQeoqrKIWxRvZWnTqkn5Dj6ZseMUkBASHCONrWg89rzRzLxB6DiQSpkEF6Gx8EioQkryhPmEMeGD-QBGye1JXyedDnt8TLuuKaxsqt2blKR9qWfNbiFgjZSAjyGWVIWE86gF7o6Z69i7fWisKLQhjWMweXEELokdoUYjiJWYH3uue-bnbb97qO_pUet12qv_-981tOJQJj6rzWIdzaliAy1_4R7cRO83qsqf1LRmasYjeDqGricTjzQe2iJLhd1UiT62I3NKDBgXm_6Sol894fHEpHmaJYb5mIw_GxFwqQaa2CJ3YYqrcT54BdRPzNcbQFyJwRz7GAJyQK6V2kL37cu7iyvixjMQQVO_gqBTC19GPI45gEiAhVzSMJBRqpmO4yjlUUSZ5p4CTOhzL6GaawkAK8ilDkLNgm20UIwKtYOw9iFq4ymXkTaU-EEeC0mFF0kexDyR6S7ymyPJhOMuNyM0BtmMddlqOwNtZ1bbWbiLTmZrxjVzx6_Sp80pZu4Wl7-I7_1NfB8tUQBDdZnvAVqoJlN1iBbFW_VcTo5Q6_yy0-0dWTP-ANSt6zM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF68QH3wFuu5D77pQrLZXI8iFsVaRKv0LWSvetS2NKm_w5_s7HZTLYigj4HZEGYmO98wM98gdBxIpUyBi9BIeIQpRkkeJz5JEuGD-wBGya2lG3GzmbTb6a0bCiuqbveqJGlv6smwGwOskRKIMcSSqhA2i-YZRCzTyHd3_1h5EbMpjWMweXEELrFdoUZDyJUSP_Lc9MzPr52OUNPlURt16qv_-941tOJQJj4bu8U6mlG9DbT8jXtwE33cqDJ_UqMxUzPuw9Xx5mYycV_jN9tkqbDbKtHBdmVOgQHjYjNf0uuUT3gwNGWe6ohhPiaDr0EEXKiuJrbJXZjmapx3XwH1E_P0DhBXYnDHDoaEHJBrqbbQQ_2idX5J3HoGImjql5B0auHLkEcRBxAJsJBLygIZpjrRURSmPAxpormnABP63Iup5loCwApyqQOmk2AbzfX6PbWDsPYha-Mpl6E2lPhBHglJhRdKHkQ8lmkN-ZVJMuG4y80KjW42YV222s5A25nVdsZq6GRyZjBm7vhV-rSyYub-4uIX8d2_iR-hxcvWTSNrXDWv99ASBWA0bvndR3PlcKQO0IJ4L5-L4aF15U98hOx9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA5eiD54i7d58E2DbZpej6IuiusieOBbaa5dde0uu3V_hz_ZSZquCiKIj4WktJNp5xtmvm8QOgikUqbARWgkPMIUoySPE58kifDBfQCj5Pakm3GrlTw-pjdfWPy2270uSVacBqPSVJTHfamPx8Q3BrgjJRBviBVYIWwSTTMzNMjk67cPtUcxm944NZNnJ-YS23FqNIS8KfEjzzFpfr7t92j1vVRqI1Bj8f_PvoQWHPrEJ5W7LKMJVayg-S-ahKvo_VqVeUe9VQrOuAe_lFfH1cQ9jV9t86XCbtpEG9tROkMM2Bcb3knRLju4PzDln3qLUUQm_U-CAh6qria2-V2Ypmucd18gGyDmagTQV2Jw0zaGtwJEW6o1dN84vzu9IG5sAxE09UtIRrXwZcijiAO4BLjIJWWBDFOd6CgKUx6GNNHcU4AVfe7FVHMtAXgFudQB00mwjqaKXqE2ENY-ZHM85TLURio_yCMhqfBCyYOIxzLdRH59PJlwmuZmtEY3G6sxW2tnYO3MWjtjm-hwvKdfKXr8uvqoPtHMfd3DX5Zv_W35Ppq9OWtkzcvW1Taao4CXqk7gHTRVDt7ULpoRo_JpONizXv0B9XX1YQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metaheuristic+optimization+of+machine+learning+models+for+strength+prediction+of+high-performance+self-compacting+alkali-activated+slag+concrete&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Parhi%2C+Suraj+Kumar&rft.au=Panda%2C+Soumyaranjan&rft.au=Dwibedy%2C+Saswat&rft.au=Panigrahi%2C+Saubhagya+Kumar&rft.date=2024-07-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=7&rft.issue=3&rft.spage=2901&rft.epage=2928&rft_id=info:doi/10.1007%2Fs41939-023-00349-4&rft.externalDocID=10_1007_s41939_023_00349_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |