Acoustic Seabed Classification Based on Multibeam Echosounder Backscatter Data Using the PSO-BP-AdaBoost Algorithm: A Case Study From Jiaozhou Bay, China
When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These proble...
Saved in:
| Published in: | IEEE journal of oceanic engineering Vol. 46; no. 2; pp. 509 - 519 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0364-9059, 1558-1691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These problems can be overcome by using smarter network designs. Adaptive boosting (AdaBoost), which combines multiple weak classifiers to create a strong classifier, has a strong classification advantage. In this article, we propose an acoustic seabed classification method that combines AdaBoost with the particle swarm optimization (PSO). The PSO-BP-AdaBoost algorithm uses multibeam echosounder backscatter data to solve the multiclassification problem of diverse seafloor sediment types with small differences between types. We optimize a BPNN using the PSO algorithm to obtain the optimal initial weight and threshold and combine these to form an AdaBoost strong classifier. The input data is obtained from the sonar mosaic from multibeam echosounder backscatter data collected in Jiaozhou Bay using a series of fine processing techniques. These processing techniques result in 34-dimensional (34-D) features using ReliefF analysis. The most advantageous 8-D features are used as input into the AdaBoost algorithm based on one-level decision tree, PSO-BP algorithm, support vector machine (SVM), and PSO-BP-AdaBoost algorithm. The PSO-BP-AdaBoost classification model has better classification accuracy. The overall accuracy is improved by 12.68%, 6.78%, and 3.56%, respectively, which demonstrates that the PSO-BP-AdaBoost algorithm can be effectively applied to acoustic seabed classification and identification and achieves high precision. |
|---|---|
| AbstractList | When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These problems can be overcome by using smarter network designs. Adaptive boosting (AdaBoost), which combines multiple weak classifiers to create a strong classifier, has a strong classification advantage. In this article, we propose an acoustic seabed classification method that combines AdaBoost with the particle swarm optimization (PSO). The PSO-BP-AdaBoost algorithm uses multibeam echosounder backscatter data to solve the multiclassification problem of diverse seafloor sediment types with small differences between types. We optimize a BPNN using the PSO algorithm to obtain the optimal initial weight and threshold and combine these to form an AdaBoost strong classifier. The input data is obtained from the sonar mosaic from multibeam echosounder backscatter data collected in Jiaozhou Bay using a series of fine processing techniques. These processing techniques result in 34-dimensional (34-D) features using ReliefF analysis. The most advantageous 8-D features are used as input into the AdaBoost algorithm based on one-level decision tree, PSO-BP algorithm, support vector machine (SVM), and PSO-BP-AdaBoost algorithm. The PSO-BP-AdaBoost classification model has better classification accuracy. The overall accuracy is improved by 12.68%, 6.78%, and 3.56%, respectively, which demonstrates that the PSO-BP-AdaBoost algorithm can be effectively applied to acoustic seabed classification and identification and achieves high precision. |
| Author | Ji, Xue Yang, Bisheng Tang, Qiuhua |
| Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0003-0566-2831 surname: Ji fullname: Ji, Xue email: jixuesdqd@whu.edu.cn organization: Key State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Hubei, Wuhan, China – sequence: 2 givenname: Bisheng orcidid: 0000-0001-7736-0803 surname: Yang fullname: Yang, Bisheng email: bshyang@whu.edu.cn organization: Key State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Hubei, Wuhan, China – sequence: 3 givenname: Qiuhua orcidid: 0000-0001-8839-1859 surname: Tang fullname: Tang, Qiuhua email: tangqiuhua@fio.org.cn organization: First Institute of Oceanography, MNR, Qingdao, China |
| BookMark | eNp9UU1v1DAQtVCR2BbuSFwscSWLP2In5pYNW6Aq2kpLz5HtTBqXbFxs57D8E_4tLltx4MBpnmbeezOad47OZj8DQq8pWVNK1Pur3XbNCCNrpmpVC_4MragQdUGlomdoRbgsC0WEeoHOY7wnhJZlpVboV2P9EpOzeA_aQI_bScfoBmd1cn7GGx1zM4Ovy5ScAX3AWzv66Je5h5DH9nvM1JTxR500vo1uvsNpBHyz3xWbm6Lp9cb7mHAz3fng0nj4gBvcZlu8T0t_xJfBH_CV0_7n6JdseHyH29HN-iV6PugpwquneoFuL7ff2s_F9e7Tl7a5LixTNBWSAi9NSUAPYAQ3FYXSKG1IxbmqKpCVIIxaWmk5SCLKoWaGQm1sTzjwmvAL9Pbk-xD8jwVi6u79Eua8smOCZhNZM5FZ8sSywccYYOisS39elIJ2U0dJ9xhDl2PoHmPonmLIQvKP8CG4gw7H_0nenCQOAP7SFaVM5nt-A7-8lG8 |
| CODEN | IJOEDY |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3298472 crossref_primary_10_1016_j_jag_2022_102778 crossref_primary_10_1109_JSTARS_2022_3230081 crossref_primary_10_3390_jmse10050691 crossref_primary_10_3390_s23042264 crossref_primary_10_1016_j_yofte_2025_104264 crossref_primary_10_3390_su142214925 crossref_primary_10_3390_rs16071163 crossref_primary_10_1007_s11709_024_1084_0 crossref_primary_10_1016_j_margeo_2021_106519 crossref_primary_10_1016_j_measurement_2025_118011 crossref_primary_10_1155_2022_5766802 crossref_primary_10_3390_rs14112675 crossref_primary_10_1177_16878132221125762 crossref_primary_10_3390_rs14153708 crossref_primary_10_3390_jmse12122163 crossref_primary_10_3390_jmse12071222 crossref_primary_10_3390_jmse13040671 crossref_primary_10_1051_e3sconf_202018501051 crossref_primary_10_3390_jmse12111984 crossref_primary_10_1109_ACCESS_2021_3135467 crossref_primary_10_3390_rs15082178 crossref_primary_10_1109_JOE_2024_3379484 crossref_primary_10_1007_s11760_021_01951_0 crossref_primary_10_1109_TGRS_2022_3198168 crossref_primary_10_1007_s11004_023_10079_5 crossref_primary_10_1109_TGRS_2023_3280243 crossref_primary_10_1007_s11063_023_11188_2 crossref_primary_10_1007_s11831_024_10185_5 crossref_primary_10_3390_app12031442 crossref_primary_10_1109_TGRS_2022_3178838 crossref_primary_10_1007_s12553_024_00925_9 |
| Cites_doi | 10.1109/34.531803 10.1109/COA.2016.7535790 10.1006/jcss.1997.1504 10.1007/3-540-45631-7_33 10.1121/1.4817833 10.1109/TPAMI.2002.1017623 10.1016/j.apacoust.2008.07.011 10.1121/1.5110244 10.1109/ICNN.1995.488968 10.1016/j.icesjms.2004.10.008 10.1109/RIOAcoustics.2015.7473586 10.1016/j.ecss.2003.09.012 10.1109/OCEANS.2006.306818 10.3390/rs11050562 10.1016/j.sedgeo.2012.07.009 10.1016/j.apacoust.2008.07.012 10.1016/S1054-3139(03)00061-4 10.1080/1064119X.2013.764557 10.5194/hess-20-3207-2016 10.1088/0266-5611/16/6/302 10.1109/JOE.2002.808205 10.1109/OCEANS.1992.612657 10.1007/s00367-012-0293-z 10.1023/A:1007649029923 10.1109/OCEANS.1993.326191 10.1093/icesjms/fsn061 10.1109/OCEANS.1990.584692 10.1121/1.414505 10.1109/JOE.2015.2410871 10.1109/JOE.2011.2122630 10.1007/BF02828555 10.1016/j.apacoust.2008.09.008 10.1007/s10916-018-1147-7 10.1023/A:1025667309714 10.1016/j.ultrasmedbio.2006.07.032 10.1007/978-981-10-6442-5_12 10.1007/s10846-018-0796-6 10.1109/SSCI.2017.8285220 10.1007/3-540-57868-4_57 10.1145/1968.1972 10.1016/j.csr.2012.03.008 10.3796/KSFOT.2019.55.1.039 10.1016/j.ecss.2015.12.014 10.1109/48.559 10.1109/48.393074 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 7TN 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1109/JOE.2020.2989853 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Computer and Information Systems Abstracts Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1558-1691 |
| EndPage | 519 |
| ExternalDocumentID | 10_1109_JOE_2020_2989853 9112613 |
| Genre | orig-research |
| GeographicLocations | Jiaozhou Bay |
| GeographicLocations_xml | – name: Jiaozhou Bay |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41876111 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2016YFB0501703 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 66. 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 ~02 AAYXX CITATION 7SC 7SP 7TB 7TN 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-61e34b40eafeb53b71e4b9ab0733977e675021c17a6f6054f82b1e8bcd03e3803 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640746800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0364-9059 |
| IngestDate | Mon Jun 30 08:43:32 EDT 2025 Tue Nov 18 21:55:51 EST 2025 Sat Nov 29 02:03:09 EST 2025 Wed Aug 27 02:28:59 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-61e34b40eafeb53b71e4b9ab0733977e675021c17a6f6054f82b1e8bcd03e3803 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0001-8839-1859 0000-0001-7736-0803 0000-0003-0566-2831 |
| PQID | 2513396825 |
| PQPubID | 85484 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_9112613 proquest_journals_2513396825 crossref_citationtrail_10_1109_JOE_2020_2989853 crossref_primary_10_1109_JOE_2020_2989853 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-April 2021-4-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-April |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of oceanic engineering |
| PublicationTitleAbbrev | JOE |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | shaheen (ref40) 2018; 33 ref13 ref12 ref15 ref14 ref10 chen (ref47) 2017; 39 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 bishop (ref30) 2012; 103 schapire (ref49) 1999; 2 ref43 david (ref11) 2014; 9 ref8 ref7 siemes (ref26) 2016; 41 ref9 ref4 zhu (ref52) 2006; 2 ref3 ref6 ref5 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref2 ref1 ref39 ref38 zhao (ref53) 2016 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref29 eberhart (ref27) 1990 |
| References_xml | – volume: 9 year: 2014 ident: ref11 article-title: A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data publication-title: PLoS ONE – ident: ref43 doi: 10.1109/34.531803 – ident: ref21 doi: 10.1109/COA.2016.7535790 – ident: ref31 doi: 10.1006/jcss.1997.1504 – ident: ref19 doi: 10.1007/3-540-45631-7_33 – ident: ref4 doi: 10.1121/1.4817833 – ident: ref44 doi: 10.1109/TPAMI.2002.1017623 – ident: ref39 doi: 10.1016/j.apacoust.2008.07.011 – ident: ref6 doi: 10.1121/1.5110244 – volume: 103 start-page: 886 year: 2012 ident: ref30 article-title: Pattern recognition and machine learning publication-title: Amer Statist Assoc – volume: 2 start-page: 1401 year: 1999 ident: ref49 article-title: A brief introduction to boosting publication-title: Proc 16th Int Joint Conf Artif Intell – ident: ref29 doi: 10.1109/ICNN.1995.488968 – ident: ref9 doi: 10.1016/j.icesjms.2004.10.008 – ident: ref42 doi: 10.1109/RIOAcoustics.2015.7473586 – ident: ref16 doi: 10.1016/j.ecss.2003.09.012 – ident: ref34 doi: 10.1109/OCEANS.2006.306818 – ident: ref5 doi: 10.3390/rs11050562 – ident: ref8 doi: 10.1016/j.sedgeo.2012.07.009 – year: 1990 ident: ref27 publication-title: Neural Network PC Tools A Practical Guide – ident: ref17 doi: 10.1016/j.apacoust.2008.07.012 – ident: ref1 doi: 10.1016/S1054-3139(03)00061-4 – start-page: 1965 year: 2016 ident: ref53 article-title: Discriminating earthquakes and explosion events by seismic signals basing on BP-AdaBoost classifier publication-title: Proc 2nd IEEE Int Conf Comput Commun – ident: ref32 doi: 10.1080/1064119X.2013.764557 – ident: ref33 doi: 10.5194/hess-20-3207-2016 – ident: ref3 doi: 10.1088/0266-5611/16/6/302 – ident: ref36 doi: 10.1109/JOE.2002.808205 – ident: ref18 doi: 10.1109/OCEANS.1992.612657 – ident: ref12 doi: 10.1007/s00367-012-0293-z – ident: ref51 doi: 10.1023/A:1007649029923 – ident: ref7 doi: 10.1109/OCEANS.1993.326191 – volume: 39 start-page: 51 year: 2017 ident: ref47 article-title: Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms publication-title: Oceanol Acta – ident: ref2 doi: 10.1093/icesjms/fsn061 – ident: ref15 doi: 10.1109/OCEANS.1990.584692 – ident: ref13 doi: 10.1121/1.414505 – volume: 41 start-page: 190 year: 2016 ident: ref26 article-title: Toward an efficient and comprehensive assessment of marine sediments through combining hydrographic surveying and geoacoustic inversion publication-title: IEEE J Ocean Eng doi: 10.1109/JOE.2015.2410871 – ident: ref10 doi: 10.1109/JOE.2011.2122630 – ident: ref22 doi: 10.1007/BF02828555 – ident: ref37 doi: 10.1016/j.apacoust.2008.09.008 – ident: ref50 doi: 10.1007/s10916-018-1147-7 – ident: ref45 doi: 10.1023/A:1025667309714 – ident: ref41 doi: 10.1016/j.ultrasmedbio.2006.07.032 – ident: ref20 doi: 10.1007/978-981-10-6442-5_12 – ident: ref28 doi: 10.1007/s10846-018-0796-6 – ident: ref23 doi: 10.1109/SSCI.2017.8285220 – volume: 33 start-page: 1 year: 2018 ident: ref40 article-title: Digital image encryption techniques for wireless sensor networks using image transformation methods: DCT and DWT publication-title: J Ambient Intell Humanized Comput – ident: ref46 doi: 10.1007/3-540-57868-4_57 – ident: ref48 doi: 10.1145/1968.1972 – ident: ref25 doi: 10.1016/j.csr.2012.03.008 – ident: ref14 doi: 10.3796/KSFOT.2019.55.1.039 – volume: 2 start-page: 349 year: 2006 ident: ref52 article-title: Multi-class AdaBoost publication-title: Statist Interface – ident: ref24 doi: 10.1016/j.ecss.2015.12.014 – ident: ref38 doi: 10.1109/48.559 – ident: ref35 doi: 10.1109/48.393074 |
| SSID | ssj0014479 |
| Score | 2.480251 |
| Snippet | When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum,... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 509 |
| SubjectTerms | Accuracy Acoustic seabed classification Acoustics AdaBoost algorithm Algorithms Artificial neural networks Back propagation Back propagation networks back-propagation neural network (BPNN) Backscatter Backscattering Classification Classifiers (sedimentation) Data Decision trees Discrete wavelet transforms Echo sounding Echosounders Machine learning Microscopy Model accuracy multibeam echosounder Neural networks Ocean floor Particle swarm optimization particle swarm optimization (PSO) Sediments Sonar Support vector machines |
| Title | Acoustic Seabed Classification Based on Multibeam Echosounder Backscatter Data Using the PSO-BP-AdaBoost Algorithm: A Case Study From Jiaozhou Bay, China |
| URI | https://ieeexplore.ieee.org/document/9112613 https://www.proquest.com/docview/2513396825 |
| Volume | 46 |
| WOSCitedRecordID | wos000640746800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014479 issn: 0364-9059 databaseCode: RIE dateStart: 19760101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbGxANMYrCBKGzID7wgLWsSu7HNW7q1QntYKw2kvUW2c2EVaz0lKdL4J_xbzk5aDYGQeLMU24r0XXx38d33EfI-i60RJqsidH0i4jKuIs2YRlvGPEzxKilFJzYhLi_l9bWa75CTbS8MAITiMzj1w3CXXzq79r_Khsr3u3iJ2kdCZF2v1vbGgPOOV49lPFIYM2yuJGM1vJhNMBFM41PPNi5H7DcXFDRV_jiIg3eZ7v_fez0nz_ookuYd7C_IDqwOyNMH3IIHZG9mQa96QupD8jO3Lgh30SvQBkoa1DB9nVCAho7Rm5UUB6Ej14Be0gmejI1XXYIaH9tvjQ1cnPRct5qGUgOK0SOdX82i8TzKSz12rmlpfvvV1Yv2ZvmR5vQMt6W-VvGeTmu3pBcL7X7cuDVueH9Cg3j3S_JlOvl89inqZRkim6qkxWQTGDc8Bl2BGTEjEuBGaePlHzGaBExBMHCwidBZhckSr2RqEpDGljEDJmP2iuyu3ApeEyqMlCMz4sAF57zkEmTor0oyYSuoygEZbpAqbM9Z7qUzbouQu8SqQGwLj23RYzsgH7Yr7jq-jn_MPfRYbuf1MA7I0cYYiv6DborU6-CoDPPpN39f9ZY8SX25SyjqOSK7bb2GY_LYfm8XTf0u2OovOq3lSw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBalHWwr7Efb0Wzdpoe9DOpGtmVb6pvTJXRdlwTaQd-MJJ_XsCYutjPo_pP9tz3JTtjYGOxNYEkYvrPuzrr7PkLexczoRMeFh64v8bhghafCUKEtYx4meeHnSSs2kYzH4upKTjfI4boXBgBc8Rkc2aG7y89Ls7S_yvrS9rtYidqtiPOAtd1a6zsDzltmvTDmnsSoYXUpyWT_bDLEVDBgR5ZvXEThb07Iqar8cRQ7_zJ6-n9v9ow86eJImrbAPycbsNghj39hF9wh2xMDatFRUu-Sn6kpnXQXvQClIadOD9NWCjlw6AD9WU5x4HpyNag5HeLZWFvdJajwsflWG8fGST-oRlFXbEAxfqTTi4k3mHpprgZlWTc0vflaVrPmen5MU3qC21JbrXhHR1U5p2czVf64Lpe44d0hdfLde-TLaHh5cup1wgyeCaTfYLoJIdecgSpAR6FOfOBaKm0FIDGeBExCMHQwfqLiAtMlXohA-yC0yVkIoWDhC7K5KBewT2iihYh0xIEnnPOcCxCuw8qPE1NAkfdIf4VUZjrWciuecZO57IXJDLHNLLZZh22PvF-vuG0ZO_4xd9diuZ7XwdgjBytjyLpPus4Cq4QjY8yoX_591Vvy8PTy83l2_nH86RV5FNjiF1fic0A2m2oJr8kD872Z1dUbZ7f3TKfokg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+Seabed+Classification+Based+on+Multibeam+Echosounder+Backscatter+Data+Using+the+PSO-BP-AdaBoost+Algorithm%3A+A+Case+Study+From+Jiaozhou+Bay%2C+China&rft.jtitle=IEEE+journal+of+oceanic+engineering&rft.au=Ji%2C+Xue&rft.au=Yang%2C+Bisheng&rft.au=Tang%2C+Qiuhua&rft.date=2021-04-01&rft.pub=IEEE&rft.issn=0364-9059&rft.volume=46&rft.issue=2&rft.spage=509&rft.epage=519&rft_id=info:doi/10.1109%2FJOE.2020.2989853&rft.externalDocID=9112613 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9059&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9059&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9059&client=summon |