Acoustic Seabed Classification Based on Multibeam Echosounder Backscatter Data Using the PSO-BP-AdaBoost Algorithm: A Case Study From Jiaozhou Bay, China

When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These proble...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of oceanic engineering Ročník 46; číslo 2; s. 509 - 519
Hlavní autori: Ji, Xue, Yang, Bisheng, Tang, Qiuhua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0364-9059, 1558-1691
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These problems can be overcome by using smarter network designs. Adaptive boosting (AdaBoost), which combines multiple weak classifiers to create a strong classifier, has a strong classification advantage. In this article, we propose an acoustic seabed classification method that combines AdaBoost with the particle swarm optimization (PSO). The PSO-BP-AdaBoost algorithm uses multibeam echosounder backscatter data to solve the multiclassification problem of diverse seafloor sediment types with small differences between types. We optimize a BPNN using the PSO algorithm to obtain the optimal initial weight and threshold and combine these to form an AdaBoost strong classifier. The input data is obtained from the sonar mosaic from multibeam echosounder backscatter data collected in Jiaozhou Bay using a series of fine processing techniques. These processing techniques result in 34-dimensional (34-D) features using ReliefF analysis. The most advantageous 8-D features are used as input into the AdaBoost algorithm based on one-level decision tree, PSO-BP algorithm, support vector machine (SVM), and PSO-BP-AdaBoost algorithm. The PSO-BP-AdaBoost classification model has better classification accuracy. The overall accuracy is improved by 12.68%, 6.78%, and 3.56%, respectively, which demonstrates that the PSO-BP-AdaBoost algorithm can be effectively applied to acoustic seabed classification and identification and achieves high precision.
AbstractList When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum, and difficulty in determining the number of hidden layers and hidden nodes that affect the classification accuracy and efficiency. These problems can be overcome by using smarter network designs. Adaptive boosting (AdaBoost), which combines multiple weak classifiers to create a strong classifier, has a strong classification advantage. In this article, we propose an acoustic seabed classification method that combines AdaBoost with the particle swarm optimization (PSO). The PSO-BP-AdaBoost algorithm uses multibeam echosounder backscatter data to solve the multiclassification problem of diverse seafloor sediment types with small differences between types. We optimize a BPNN using the PSO algorithm to obtain the optimal initial weight and threshold and combine these to form an AdaBoost strong classifier. The input data is obtained from the sonar mosaic from multibeam echosounder backscatter data collected in Jiaozhou Bay using a series of fine processing techniques. These processing techniques result in 34-dimensional (34-D) features using ReliefF analysis. The most advantageous 8-D features are used as input into the AdaBoost algorithm based on one-level decision tree, PSO-BP algorithm, support vector machine (SVM), and PSO-BP-AdaBoost algorithm. The PSO-BP-AdaBoost classification model has better classification accuracy. The overall accuracy is improved by 12.68%, 6.78%, and 3.56%, respectively, which demonstrates that the PSO-BP-AdaBoost algorithm can be effectively applied to acoustic seabed classification and identification and achieves high precision.
Author Ji, Xue
Yang, Bisheng
Tang, Qiuhua
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0003-0566-2831
  surname: Ji
  fullname: Ji, Xue
  email: jixuesdqd@whu.edu.cn
  organization: Key State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Hubei, Wuhan, China
– sequence: 2
  givenname: Bisheng
  orcidid: 0000-0001-7736-0803
  surname: Yang
  fullname: Yang, Bisheng
  email: bshyang@whu.edu.cn
  organization: Key State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Hubei, Wuhan, China
– sequence: 3
  givenname: Qiuhua
  orcidid: 0000-0001-8839-1859
  surname: Tang
  fullname: Tang, Qiuhua
  email: tangqiuhua@fio.org.cn
  organization: First Institute of Oceanography, MNR, Qingdao, China
BookMark eNp9UU1v1DAQtVCR2BbuSFwscSWLP2In5pYNW6Aq2kpLz5HtTBqXbFxs57D8E_4tLltx4MBpnmbeezOad47OZj8DQq8pWVNK1Pur3XbNCCNrpmpVC_4MragQdUGlomdoRbgsC0WEeoHOY7wnhJZlpVboV2P9EpOzeA_aQI_bScfoBmd1cn7GGx1zM4Ovy5ScAX3AWzv66Je5h5DH9nvM1JTxR500vo1uvsNpBHyz3xWbm6Lp9cb7mHAz3fng0nj4gBvcZlu8T0t_xJfBH_CV0_7n6JdseHyH29HN-iV6PugpwquneoFuL7ff2s_F9e7Tl7a5LixTNBWSAi9NSUAPYAQ3FYXSKG1IxbmqKpCVIIxaWmk5SCLKoWaGQm1sTzjwmvAL9Pbk-xD8jwVi6u79Eua8smOCZhNZM5FZ8sSywccYYOisS39elIJ2U0dJ9xhDl2PoHmPonmLIQvKP8CG4gw7H_0nenCQOAP7SFaVM5nt-A7-8lG8
CODEN IJOEDY
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3298472
crossref_primary_10_1016_j_jag_2022_102778
crossref_primary_10_1109_JSTARS_2022_3230081
crossref_primary_10_3390_jmse10050691
crossref_primary_10_3390_s23042264
crossref_primary_10_1016_j_yofte_2025_104264
crossref_primary_10_3390_su142214925
crossref_primary_10_3390_rs16071163
crossref_primary_10_1007_s11709_024_1084_0
crossref_primary_10_1016_j_margeo_2021_106519
crossref_primary_10_1016_j_measurement_2025_118011
crossref_primary_10_1155_2022_5766802
crossref_primary_10_3390_rs14112675
crossref_primary_10_1177_16878132221125762
crossref_primary_10_3390_rs14153708
crossref_primary_10_3390_jmse12122163
crossref_primary_10_3390_jmse12071222
crossref_primary_10_3390_jmse13040671
crossref_primary_10_1051_e3sconf_202018501051
crossref_primary_10_3390_jmse12111984
crossref_primary_10_1109_ACCESS_2021_3135467
crossref_primary_10_3390_rs15082178
crossref_primary_10_1109_JOE_2024_3379484
crossref_primary_10_1007_s11760_021_01951_0
crossref_primary_10_1109_TGRS_2022_3198168
crossref_primary_10_1007_s11004_023_10079_5
crossref_primary_10_1109_TGRS_2023_3280243
crossref_primary_10_1007_s11063_023_11188_2
crossref_primary_10_1007_s11831_024_10185_5
crossref_primary_10_3390_app12031442
crossref_primary_10_1109_TGRS_2022_3178838
crossref_primary_10_1007_s12553_024_00925_9
Cites_doi 10.1109/34.531803
10.1109/COA.2016.7535790
10.1006/jcss.1997.1504
10.1007/3-540-45631-7_33
10.1121/1.4817833
10.1109/TPAMI.2002.1017623
10.1016/j.apacoust.2008.07.011
10.1121/1.5110244
10.1109/ICNN.1995.488968
10.1016/j.icesjms.2004.10.008
10.1109/RIOAcoustics.2015.7473586
10.1016/j.ecss.2003.09.012
10.1109/OCEANS.2006.306818
10.3390/rs11050562
10.1016/j.sedgeo.2012.07.009
10.1016/j.apacoust.2008.07.012
10.1016/S1054-3139(03)00061-4
10.1080/1064119X.2013.764557
10.5194/hess-20-3207-2016
10.1088/0266-5611/16/6/302
10.1109/JOE.2002.808205
10.1109/OCEANS.1992.612657
10.1007/s00367-012-0293-z
10.1023/A:1007649029923
10.1109/OCEANS.1993.326191
10.1093/icesjms/fsn061
10.1109/OCEANS.1990.584692
10.1121/1.414505
10.1109/JOE.2015.2410871
10.1109/JOE.2011.2122630
10.1007/BF02828555
10.1016/j.apacoust.2008.09.008
10.1007/s10916-018-1147-7
10.1023/A:1025667309714
10.1016/j.ultrasmedbio.2006.07.032
10.1007/978-981-10-6442-5_12
10.1007/s10846-018-0796-6
10.1109/SSCI.2017.8285220
10.1007/3-540-57868-4_57
10.1145/1968.1972
10.1016/j.csr.2012.03.008
10.3796/KSFOT.2019.55.1.039
10.1016/j.ecss.2015.12.014
10.1109/48.559
10.1109/48.393074
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/JOE.2020.2989853
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1558-1691
EndPage 519
ExternalDocumentID 10_1109_JOE_2020_2989853
9112613
Genre orig-research
GeographicLocations Jiaozhou Bay
GeographicLocations_xml – name: Jiaozhou Bay
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41876111
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2016YFB0501703
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
66.
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
~02
AAYXX
CITATION
7SC
7SP
7TB
7TN
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-61e34b40eafeb53b71e4b9ab0733977e675021c17a6f6054f82b1e8bcd03e3803
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000640746800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0364-9059
IngestDate Mon Jun 30 08:43:32 EDT 2025
Tue Nov 18 21:55:51 EST 2025
Sat Nov 29 02:03:09 EST 2025
Wed Aug 27 02:28:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-61e34b40eafeb53b71e4b9ab0733977e675021c17a6f6054f82b1e8bcd03e3803
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0001-8839-1859
0000-0001-7736-0803
0000-0003-0566-2831
PQID 2513396825
PQPubID 85484
PageCount 11
ParticipantIDs ieee_primary_9112613
proquest_journals_2513396825
crossref_citationtrail_10_1109_JOE_2020_2989853
crossref_primary_10_1109_JOE_2020_2989853
PublicationCentury 2000
PublicationDate 2021-April
2021-4-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of oceanic engineering
PublicationTitleAbbrev JOE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References shaheen (ref40) 2018; 33
ref13
ref12
ref15
ref14
ref10
chen (ref47) 2017; 39
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
bishop (ref30) 2012; 103
schapire (ref49) 1999; 2
ref43
david (ref11) 2014; 9
ref8
ref7
siemes (ref26) 2016; 41
ref9
ref4
zhu (ref52) 2006; 2
ref3
ref6
ref5
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref39
ref38
zhao (ref53) 2016
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref29
eberhart (ref27) 1990
References_xml – volume: 9
  year: 2014
  ident: ref11
  article-title: A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data
  publication-title: PLoS ONE
– ident: ref43
  doi: 10.1109/34.531803
– ident: ref21
  doi: 10.1109/COA.2016.7535790
– ident: ref31
  doi: 10.1006/jcss.1997.1504
– ident: ref19
  doi: 10.1007/3-540-45631-7_33
– ident: ref4
  doi: 10.1121/1.4817833
– ident: ref44
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref39
  doi: 10.1016/j.apacoust.2008.07.011
– ident: ref6
  doi: 10.1121/1.5110244
– volume: 103
  start-page: 886
  year: 2012
  ident: ref30
  article-title: Pattern recognition and machine learning
  publication-title: Amer Statist Assoc
– volume: 2
  start-page: 1401
  year: 1999
  ident: ref49
  article-title: A brief introduction to boosting
  publication-title: Proc 16th Int Joint Conf Artif Intell
– ident: ref29
  doi: 10.1109/ICNN.1995.488968
– ident: ref9
  doi: 10.1016/j.icesjms.2004.10.008
– ident: ref42
  doi: 10.1109/RIOAcoustics.2015.7473586
– ident: ref16
  doi: 10.1016/j.ecss.2003.09.012
– ident: ref34
  doi: 10.1109/OCEANS.2006.306818
– ident: ref5
  doi: 10.3390/rs11050562
– ident: ref8
  doi: 10.1016/j.sedgeo.2012.07.009
– year: 1990
  ident: ref27
  publication-title: Neural Network PC Tools A Practical Guide
– ident: ref17
  doi: 10.1016/j.apacoust.2008.07.012
– ident: ref1
  doi: 10.1016/S1054-3139(03)00061-4
– start-page: 1965
  year: 2016
  ident: ref53
  article-title: Discriminating earthquakes and explosion events by seismic signals basing on BP-AdaBoost classifier
  publication-title: Proc 2nd IEEE Int Conf Comput Commun
– ident: ref32
  doi: 10.1080/1064119X.2013.764557
– ident: ref33
  doi: 10.5194/hess-20-3207-2016
– ident: ref3
  doi: 10.1088/0266-5611/16/6/302
– ident: ref36
  doi: 10.1109/JOE.2002.808205
– ident: ref18
  doi: 10.1109/OCEANS.1992.612657
– ident: ref12
  doi: 10.1007/s00367-012-0293-z
– ident: ref51
  doi: 10.1023/A:1007649029923
– ident: ref7
  doi: 10.1109/OCEANS.1993.326191
– volume: 39
  start-page: 51
  year: 2017
  ident: ref47
  article-title: Back propagation neural network classification of sediment seabed acoustic sonar images based on particle swarm optimization algorithms
  publication-title: Oceanol Acta
– ident: ref2
  doi: 10.1093/icesjms/fsn061
– ident: ref15
  doi: 10.1109/OCEANS.1990.584692
– ident: ref13
  doi: 10.1121/1.414505
– volume: 41
  start-page: 190
  year: 2016
  ident: ref26
  article-title: Toward an efficient and comprehensive assessment of marine sediments through combining hydrographic surveying and geoacoustic inversion
  publication-title: IEEE J Ocean Eng
  doi: 10.1109/JOE.2015.2410871
– ident: ref10
  doi: 10.1109/JOE.2011.2122630
– ident: ref22
  doi: 10.1007/BF02828555
– ident: ref37
  doi: 10.1016/j.apacoust.2008.09.008
– ident: ref50
  doi: 10.1007/s10916-018-1147-7
– ident: ref45
  doi: 10.1023/A:1025667309714
– ident: ref41
  doi: 10.1016/j.ultrasmedbio.2006.07.032
– ident: ref20
  doi: 10.1007/978-981-10-6442-5_12
– ident: ref28
  doi: 10.1007/s10846-018-0796-6
– ident: ref23
  doi: 10.1109/SSCI.2017.8285220
– volume: 33
  start-page: 1
  year: 2018
  ident: ref40
  article-title: Digital image encryption techniques for wireless sensor networks using image transformation methods: DCT and DWT
  publication-title: J Ambient Intell Humanized Comput
– ident: ref46
  doi: 10.1007/3-540-57868-4_57
– ident: ref48
  doi: 10.1145/1968.1972
– ident: ref25
  doi: 10.1016/j.csr.2012.03.008
– ident: ref14
  doi: 10.3796/KSFOT.2019.55.1.039
– volume: 2
  start-page: 349
  year: 2006
  ident: ref52
  article-title: Multi-class AdaBoost
  publication-title: Statist Interface
– ident: ref24
  doi: 10.1016/j.ecss.2015.12.014
– ident: ref38
  doi: 10.1109/48.559
– ident: ref35
  doi: 10.1109/48.393074
SSID ssj0014479
Score 2.4801755
Snippet When backpropagation neural network (BPNN) is often applied to supervised classification, problems arise, including a slow convergence rate, local extremum,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 509
SubjectTerms Accuracy
Acoustic seabed classification
Acoustics
AdaBoost algorithm
Algorithms
Artificial neural networks
Back propagation
Back propagation networks
back-propagation neural network (BPNN)
Backscatter
Backscattering
Classification
Classifiers (sedimentation)
Data
Decision trees
Discrete wavelet transforms
Echo sounding
Echosounders
Machine learning
Microscopy
Model accuracy
multibeam echosounder
Neural networks
Ocean floor
Particle swarm optimization
particle swarm optimization (PSO)
Sediments
Sonar
Support vector machines
Title Acoustic Seabed Classification Based on Multibeam Echosounder Backscatter Data Using the PSO-BP-AdaBoost Algorithm: A Case Study From Jiaozhou Bay, China
URI https://ieeexplore.ieee.org/document/9112613
https://www.proquest.com/docview/2513396825
Volume 46
WOSCitedRecordID wos000640746800010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014479
  issn: 0364-9059
  databaseCode: RIE
  dateStart: 19760101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLXGxANMYrCBKGzID7wgzWsSO3bMW7q1QntYKw2kvUX-uGEVaz0lKdL4J_xbbDethkBIvFmKbUU5_rg3995zEHrPbM14ojThUuSEibwmRW0FEZmmQbC7VqaOYhPi8rK4vpazHXSyrYUBgJh8BqehGWP51plV-FU2lKHeJUjUPhKCr2u1thEDxta8epQzIr3NsAlJJnJ4MR17RzBLTgPbeJHT366gqKnyx0Ecb5fJ_v-913P0rLcicbmG_QXageUBevqAW_AA7U0NqGVPSH2IfpbGReEufAVKg8VRDTPkCUVo8MjfZhb7RqzI1aAWeOxPxjaoLkHjH5tvrYlcnPhcdQrHVAPsrUc8u5qS0YyUVo2caztc3n51zby7WXzEJT7z0-KQq3iPJ41b4Iu5cj9u3MpPeH-Co3j3S_RlMv589on0sgzEZDLtvLMJlGmWgKpB51SLFJiWSgf5R29NgndBvOFgUqF47Z0lVheZTqHQxiYUaJHQV2h36ZbwGmElIc1rywuQwPw31H7SXFDFeaFTa8QADTdIVabnLA_SGbdV9F0SWXlsq4Bt1WM7QB-2I-7WfB3_6HsYsNz262EcoKPNYqj6Dd1WWdDBkdz702_-PuotepKFdJeY1HOEdrtmBcfosfnezdvmXVyrvwBfVeZf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLamgcRF4rINrTDAD7wgzWsSO3HMWzpajTHaShvS3iJfjlnF2kxJijT-Cf8W200rEAiJN0uxrSifL-fknPN9CL1hxrIskopkgqeE8dSS3BpOeKKoF-y2UtsgNsHH4_zyUky30OGmFgYAQvIZHPlmiOWbSi_9r7K-8PUuXqL2TspYEq2qtTYxA8ZWzHo0Y0Q4q2EdlIxE_3QydK5gEh15vvE8pb9dQkFV5Y-jONwvo8f_92ZP0KPOjsTFCvinaAsWO-jBL-yCO-jhRINcdJTUu-hHoasg3YXPQSowOOhh-kyhAA4euPvMYNcINbkK5BwP3dnYeN0lqN1j_bXRgY0Tv5etxCHZADv7EU_PJ2QwJYWRg6pqWlxcf6nqWXs1f4cLfOymxT5b8RaP6mqOT2ey-n5VLd2Et4c4yHfvoc-j4cXxCemEGYhORNw6dxMoUywCaUGlVPEYmBJSeQFIZ0-Cc0Kc6aBjLjPr3CVm80TFkCttIgo0j-gztL2oFrCPsBQQp9ZkOQhg7hsqN2nKqcyyXMVG8x7qr5Eqdcda7sUzrsvgvUSidNiWHtuyw7aH3m5G3KwYO_7Rd9djuenXwdhDB-vFUHZbuikTr4QjMudRP__7qNfo3snFp7Py7MP44wt0P_HJLyHF5wBtt_USXqK7-ls7a-pXYd3-BH9d6aY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+Seabed+Classification+Based+on+Multibeam+Echosounder+Backscatter+Data+Using+the+PSO-BP-AdaBoost+Algorithm%3A+A+Case+Study+From+Jiaozhou+Bay%2C+China&rft.jtitle=IEEE+journal+of+oceanic+engineering&rft.au=Ji%2C+Xue&rft.au=Yang%2C+Bisheng&rft.au=Tang%2C+Qiuhua&rft.date=2021-04-01&rft.issn=0364-9059&rft.eissn=1558-1691&rft.volume=46&rft.issue=2&rft.spage=509&rft.epage=519&rft_id=info:doi/10.1109%2FJOE.2020.2989853&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JOE_2020_2989853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-9059&client=summon