A Universal Empirical Dynamic Programming Algorithm for Continuous State MDPs

We propose universal randomized function approximation-based empirical value learning (EVL) algorithms for Markov decision processes. The "empirical" nature comes from each iteration being done empirically from samples available from simulations of the next state. This makes the Bellman op...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 65; číslo 1; s. 115 - 129
Hlavní autoři: Haskell, William B., Jain, Rahul, Sharma, Hiteshi, Yu, Pengqian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.