An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models

Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on software engineering Ročník 48; číslo 1; s. 166 - 185
Hlavní autoři: Jiarpakdee, Jirayus, Tantithamthavorn, Chakkrit Kla, Dam, Hoa Khanh, Grundy, John
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2022
IEEE Computer Society
Témata:
ISSN:0098-5589, 1939-3520
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why models make such a prediction and fail to uphold the privacy laws in terms of the requirement to explain any decision made by an algorithm. In this paper, we empirically evaluate three model-agnostic techniques, i.e., two state-of-the-art Local Interpretability Model-agnostic Explanations technique (LIME) and BreakDown techniques, and our improvement of LIME with Hyper Parameter Optimisation (LIME-HPO). Through a case study of 32 highly-curated defect datasets that span across 9 open-source software systems, we conclude that (1) model-agnostic techniques are needed to explain individual predictions of defect models; (2) instance explanations generated by model-agnostic techniques are mostly overlapping (but not exactly the same) with the global explanation of defect models and reliable when they are re-generated; (3) model-agnostic techniques take less than a minute to generate instance explanations; and (4) more than half of the practitioners perceive that the contrastive explanations are necessary and useful to understand the predictions of defect models. Since the implementation of the studied model-agnostic techniques is available in both Python and R, we recommend model-agnostic techniques be used in the future.
AbstractList Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why models make such a prediction and fail to uphold the privacy laws in terms of the requirement to explain any decision made by an algorithm. In this paper, we empirically evaluate three model-agnostic techniques, i.e., two state-of-the-art Local Interpretability Model-agnostic Explanations technique (LIME) and BreakDown techniques, and our improvement of LIME with Hyper Parameter Optimisation (LIME-HPO). Through a case study of 32 highly-curated defect datasets that span across 9 open-source software systems, we conclude that (1) model-agnostic techniques are needed to explain individual predictions of defect models; (2) instance explanations generated by model-agnostic techniques are mostly overlapping (but not exactly the same) with the global explanation of defect models and reliable when they are re-generated; (3) model-agnostic techniques take less than a minute to generate instance explanations; and (4) more than half of the practitioners perceive that the contrastive explanations are necessary and useful to understand the predictions of defect models. Since the implementation of the studied model-agnostic techniques is available in both Python and R, we recommend model-agnostic techniques be used in the future.
Author Jiarpakdee, Jirayus
Tantithamthavorn, Chakkrit Kla
Dam, Hoa Khanh
Grundy, John
Author_xml – sequence: 1
  givenname: Jirayus
  orcidid: 0000-0002-2907-915X
  surname: Jiarpakdee
  fullname: Jiarpakdee, Jirayus
  email: jirayus.jiarpakdee@monash.edu
  organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia
– sequence: 2
  givenname: Chakkrit Kla
  orcidid: 0000-0002-5516-9984
  surname: Tantithamthavorn
  fullname: Tantithamthavorn, Chakkrit Kla
  email: chakkrit@monash.edu
  organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia
– sequence: 3
  givenname: Hoa Khanh
  orcidid: 0000-0003-4246-0526
  surname: Dam
  fullname: Dam, Hoa Khanh
  email: hoa@uow.edu.au
  organization: Faculty of Engineering and Information Sciences, School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia
– sequence: 4
  givenname: John
  orcidid: 0000-0003-4928-7076
  surname: Grundy
  fullname: Grundy, John
  email: john.grundy@monash.edu
  organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia
BookMark eNp9kDtPwzAURi1UJEphR2KxxJziRxzHY1XKQyoCqWW2HOcGXLVxsd2h_55EqRgYmLycc_3pXKJR61tA6IaSKaVE3a9XiykjjEyZKhkvxRkaU8VVxgUjIzQmRJWZEKW6QJcxbgghQkoxRstZixe7vQvOmi1epUN9xL7Br76GbTb7bH1MzuI12K_WfR8g4sYH_AAN2ITfA9TOJufbgY9X6Lwx2wjXp3eCPh4X6_lztnx7epnPlplliqZMANiCSlvJqqiB1iU1VdHNsVbVslKqbrgApoBBbipJhVGsoKSRTBrZUFvxCbob7u6D70clvfGH0HZf6o5UhHGWs44qBsoGH2OARluXTD83BeO2mhLdl9NdOd2X06dynUj-iPvgdiYc_1NuB8UBwC-uSJ7zUvIfoUF62A
CODEN IESEDJ
CitedBy_id crossref_primary_10_1177_1088467X241301390
crossref_primary_10_1109_TSE_2020_3047088
crossref_primary_10_1109_ACCESS_2022_3145799
crossref_primary_10_1007_s10515_020_00277_4
crossref_primary_10_3390_biomedinformatics2010009
crossref_primary_10_1109_TSE_2022_3144348
crossref_primary_10_1109_TSE_2023_3305244
crossref_primary_10_1049_iet_sen_2019_0389
crossref_primary_10_1016_j_jss_2020_110847
crossref_primary_10_1109_TSE_2021_3093761
crossref_primary_10_1109_TSE_2022_3173346
crossref_primary_10_1145_3712190
crossref_primary_10_1016_j_infsof_2022_107016
crossref_primary_10_1145_3719006
crossref_primary_10_3390_app13053088
crossref_primary_10_1145_3680472
crossref_primary_10_1109_TR_2025_3548107
crossref_primary_10_1016_j_jlp_2024_105511
crossref_primary_10_1016_j_aap_2025_108220
crossref_primary_10_1145_3544968
crossref_primary_10_1007_s10664_020_09848_1
crossref_primary_10_1145_3660809
crossref_primary_10_1007_s11219_025_09727_2
crossref_primary_10_1109_TSE_2021_3056941
crossref_primary_10_1016_j_jss_2024_112159
crossref_primary_10_1109_TSE_2022_3220740
crossref_primary_10_3390_info16090774
crossref_primary_10_1145_3641540
crossref_primary_10_1016_j_engappai_2023_106187
crossref_primary_10_1016_j_eswa_2023_121640
crossref_primary_10_1155_2022_8167821
crossref_primary_10_1109_ACCESS_2025_3567140
crossref_primary_10_1109_TR_2024_3455390
crossref_primary_10_3390_computers13020052
crossref_primary_10_1007_s11219_023_09656_y
crossref_primary_10_1007_s10515_025_00510_y
crossref_primary_10_1109_TSE_2020_3023177
crossref_primary_10_1145_3763230
crossref_primary_10_1145_3678167
crossref_primary_10_1016_j_jss_2024_112182
crossref_primary_10_1145_3731559
crossref_primary_10_1002_smr_2699
crossref_primary_10_1002_smr_2616
crossref_primary_10_1007_s10664_022_10261_z
crossref_primary_10_1109_MS_2024_3505544
crossref_primary_10_1145_3582572
crossref_primary_10_1109_TSE_2021_3062968
crossref_primary_10_1007_s10515_024_00424_1
crossref_primary_10_1002_stvr_1784
crossref_primary_10_1371_journal_pone_0307112
crossref_primary_10_1007_s10664_022_10224_4
crossref_primary_10_1007_s11390_021_1596_1
crossref_primary_10_1007_s41870_025_02403_5
crossref_primary_10_1145_3707456
crossref_primary_10_1007_s10270_024_01251_4
crossref_primary_10_1016_j_compeleceng_2024_109246
crossref_primary_10_1109_TSE_2022_3158252
crossref_primary_10_1016_j_jss_2024_111968
crossref_primary_10_1109_MS_2023_3246686
crossref_primary_10_1109_MS_2021_3072088
crossref_primary_10_1007_s13198_021_01582_1
crossref_primary_10_3390_s23031074
Cites_doi 10.1109/ASWEC.2013.33
10.1109/ICSE.2013.6606589
10.1109/ICSME.2018.00018
10.1016/j.tics.2018.12.004
10.1109/ICST.2013.38
10.1109/TSE.2011.103
10.1023/A:1008202821328
10.1145/3236009
10.1145/1134285.1134336
10.1007/978-1-84800-044-5_3
10.1109/MSR.2012.6224300
10.1017/S1358246100005130
10.1109/MSR.2010.5463279
10.1016/S0304-3800(02)00257-0
10.1007/978-1-4612-4380-9_16
10.1109/TSE.2018.2877612
10.1145/1540438.1540448
10.1016/j.jss.2018.12.001
10.1109/FIE.2016.7757406
10.1109/TSE.2012.83
10.1109/ISSREW.2016.30
10.1007/978-1-4899-4541-9
10.1109/TSE.2016.2584050
10.1109/ICSE.2019.00075
10.1145/3183519.3183547
10.1111/1468-5914.00197
10.1007/s10515-015-0179-1
10.1145/1082983.1083172
10.1145/2950290.2950353
10.1109/ICSE.2015.91
10.1007/s10664-020-09808-9
10.1145/2597073.2597076
10.1515/9780691221489
10.1109/TSE.2008.35
10.1186/1471-2105-9-307
10.1145/2939672.2939778
10.1109/SANER.2015.7081824
10.1145/1595696.1595713
10.1016/j.jss.2007.07.040
10.1109/TSE.2018.2876537
10.2307/2699986
10.1145/1868328.1868336
10.4324/9781315807072
10.1145/3180155.3180197
10.1145/3236024.3236050
10.1109/MTAS.2005.1563500
10.3389/fnbot.2013.00021
10.1007/s10664-011-9173-9
10.1109/ICSE.2015.93
10.1109/ICSE.2013.6606583
10.1109/TSE.2007.256941
10.1007/s10664-011-9193-5
10.1016/j.artint.2018.07.007
10.1109/TSE.2016.2553030
10.21236/ad0648750
10.5120/ijais12-450574
10.1109/ICACTE.2008.204
10.1016/j.tics.2006.08.004
10.4135/9781483348957
10.1016/s0020-7373(87)80053-6
10.1145/1656274.1656278
10.1016/j.ins.2011.01.039
10.1109/ESEM.2009.5316006
10.1109/ICSE.2015.139
10.1146/annurev.psych.50.1.537
10.1016/j.jss.2009.06.055
10.1145/1390817.1390822
10.1016/j.infsof.2016.04.017
10.1109/TSE.2018.2794977
10.32614/rj-2018-072
10.1109/TSE.2017.2720603
10.1109/MS.2013.86
10.1109/TSE.2012.43
10.1109/TSE.2019.2891758
10.1007/s10664-012-9218-8
10.1109/ICSME.2018.00083
10.1148/radiology.143.1.7063747
10.1007/978-3-319-19425-7
10.1145/1134285.1134349
10.1145/2025113.2025119
10.1145/1985793.1985860
10.1145/2884781.2884857
10.1109/TSE.2012.70
10.1109/ICSME.2017.51
10.18637/jss.v040.i06
10.1109/MSR.2017.4
10.1109/MSR.2017.18
10.1145/2889160.2889256
10.1145/2884781.2884852
ContentType Journal Article
Copyright Copyright IEEE Computer Society 2022
Copyright_xml – notice: Copyright IEEE Computer Society 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
JQ2
K9.
DOI 10.1109/TSE.2020.2982385
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1939-3520
EndPage 185
ExternalDocumentID 10_1109_TSE_2020_2982385
9044387
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DE200100941
  funderid: 10.13039/501100000923
– fundername: ARC Laureate Fellowship
  grantid: FL190100035
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
8R4
8R5
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFO
ACGOD
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BKOMP
BPEOZ
CS3
DU5
EBS
EDO
EJD
HZ~
I-F
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
Q2X
RIA
RIE
RNS
RXW
S10
TAE
TN5
TWZ
UHB
UPT
WH7
YZZ
AAYXX
CITATION
JQ2
K9.
ID FETCH-LOGICAL-c291t-5eec617cb7b6de1d81ab6577cc9d7b99df35e29e2e4ab715a92610f727a7f1cb3
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742179000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-5589
IngestDate Fri Oct 03 03:31:16 EDT 2025
Sat Nov 29 03:10:25 EST 2025
Tue Nov 18 21:49:35 EST 2025
Wed Aug 27 03:03:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5eec617cb7b6de1d81ab6577cc9d7b99df35e29e2e4ab715a92610f727a7f1cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4928-7076
0000-0002-5516-9984
0000-0002-2907-915X
0000-0003-4246-0526
PQID 2619023242
PQPubID 21418
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_TSE_2020_2982385
crossref_primary_10_1109_TSE_2020_2982385
proquest_journals_2619023242
ieee_primary_9044387
PublicationCentury 2000
PublicationDate 2022-Jan.-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on software engineering
PublicationTitleAbbrev TSE
PublicationYear 2022
Publisher IEEE
IEEE Computer Society
Publisher_xml – name: IEEE
– name: IEEE Computer Society
References ref56
ref59
ref58
ref53
ref52
ref55
ref51
ref50
ref46
ref45
ref48
ref42
ref41
Storn (ref91) 1997; 11
ref44
ref43
ref7
ref4
ref3
ref5
ref100
Gosiewska (ref29) 2019
ref101
ref40
Hilton (ref35) 2005
ref34
Bas (ref6) 1980
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
Biecek (ref9) 2017
Biecek (ref8)
Quinlan (ref78) 1993
Kuhn (ref49) 2017
Lundberg (ref57)
ref24
ref26
ref25
ref20
Lipton (ref54)
ref28
ref27
Ribeiro (ref84) 2016
Breiman (ref11)
ref13
ref12
ref15
ref14
ref97
ref96
Ribeiro (ref83) 2016
ref99
ref10
ref98
ref17
ref19
Shihab (ref88) 2012
ref18
Tantithamthavorn (ref94)
ref93
ref92
ref95
ref90
ref89
ref86
ref85
ref87
Dam (ref16)
Pedersen (ref75)
ref81
ref80
ref79
ref108
Krishna (ref47) 2017
ref109
ref106
ref107
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
Regulation (ref82) 2016; 59
Fox (ref21)
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref63
ref66
ref113
French (ref22) 2014
ref65
Friedman (ref23) 2001; 1
ref60
ref62
ref61
References_xml – ident: ref12
  doi: 10.1109/ASWEC.2013.33
– ident: ref80
  doi: 10.1109/ICSE.2013.6606589
– ident: ref42
  doi: 10.1109/ICSME.2018.00018
– ident: ref36
  doi: 10.1016/j.tics.2018.12.004
– ident: ref13
  doi: 10.1109/ICST.2013.38
– ident: ref75
  article-title: lime: Local interpretable model-agnostic explanations. R package version 0.4.0
– ident: ref32
  doi: 10.1109/TSE.2011.103
– ident: ref1
  article-title: An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: ref91
  article-title: Differential evolutionA simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– ident: ref30
  doi: 10.1145/3236009
– ident: ref4
  doi: 10.1145/1134285.1134336
– ident: ref45
  doi: 10.1007/978-1-84800-044-5_3
– ident: ref7
  doi: 10.1109/MSR.2012.6224300
– ident: ref53
  doi: 10.1017/S1358246100005130
– ident: ref17
  doi: 10.1109/MSR.2010.5463279
– ident: ref26
  doi: 10.1016/S0304-3800(02)00257-0
– ident: ref110
  doi: 10.1007/978-1-4612-4380-9_16
– ident: ref108
  doi: 10.1109/TSE.2018.2877612
– ident: ref60
  doi: 10.1145/1540438.1540448
– year: 1993
  ident: ref78
  article-title: C4.5: Programs for Machine Learning
– ident: ref74
  doi: 10.1016/j.jss.2018.12.001
– ident: ref103
  article-title: stats : The R stats package. R Package. Version 3.4.0
– ident: ref76
  doi: 10.1109/FIE.2016.7757406
– ident: ref62
  doi: 10.1109/TSE.2012.83
– ident: ref40
  doi: 10.1109/ISSREW.2016.30
– year: 2016
  ident: ref84
  article-title: Model-agnostic interpretability of machine learning
– ident: ref19
  doi: 10.1007/978-1-4899-4541-9
– ident: ref101
  doi: 10.1109/TSE.2016.2584050
– ident: ref112
  doi: 10.1109/ICSE.2019.00075
– ident: ref96
  doi: 10.1145/3183519.3183547
– ident: ref107
  doi: 10.1111/1468-5914.00197
– ident: ref109
  doi: 10.1007/s10515-015-0179-1
– start-page: 44
  volume-title: The Psychology of Counterfactual Thinking
  year: 2005
  ident: ref35
  article-title: The course of events: Counterfactuals, causal sequences, and explanation
– volume-title: Wiley StatsRef: Statistics Reference Online
  year: 2014
  ident: ref22
  article-title: Decisionanalysis
– ident: ref46
  doi: 10.1145/1082983.1083172
– ident: ref21
  article-title: car: Companion to applied regression. R package version 3.0-2
– ident: ref111
  doi: 10.1145/2950290.2950353
– ident: ref27
  doi: 10.1109/ICSE.2015.91
– ident: ref3
  doi: 10.1007/s10664-020-09808-9
– year: 2017
  ident: ref9
  article-title: pyBreakDown: Python implementation of R package breakDown
– ident: ref58
  doi: 10.1145/2597073.2597076
– ident: ref87
  doi: 10.1515/9780691221489
– ident: ref51
  doi: 10.1109/TSE.2008.35
– ident: ref92
  doi: 10.1186/1471-2105-9-307
– ident: ref11
  article-title: randomForest : Breiman and Cutlers random forests for classification and regression. R package version 4.612
– ident: ref85
  doi: 10.1145/2939672.2939778
– ident: ref105
  doi: 10.1109/SANER.2015.7081824
– ident: ref113
  doi: 10.1145/1595696.1595713
– ident: ref20
  doi: 10.1016/j.jss.2007.07.040
– ident: ref97
  doi: 10.1109/TSE.2018.2876537
– ident: ref24
  doi: 10.2307/2699986
– ident: ref59
  doi: 10.1145/1868328.1868336
– ident: ref50
  doi: 10.4324/9781315807072
– ident: ref2
  doi: 10.1145/3180155.3180197
– ident: ref14
  doi: 10.1145/3236024.3236050
– year: 2017
  ident: ref49
  article-title: caret: Classification and regression training. R package version 6.078
– ident: ref66
  doi: 10.1109/MTAS.2005.1563500
– ident: ref71
  doi: 10.3389/fnbot.2013.00021
– year: 2012
  ident: ref88
  article-title: An exploration of challenges limiting pragmatic software defect prediction
– ident: ref18
  doi: 10.1007/s10664-011-9173-9
– ident: ref98
  doi: 10.1109/ICSE.2015.93
– start-page: 53
  volume-title: Proc. Int. Conf. Softw. Eng.: New Ideas Emerg. Results
  ident: ref16
  article-title: Explainable software analytics
– volume-title: The Scientific Image
  year: 1980
  ident: ref6
– ident: ref52
  doi: 10.1109/ICSE.2013.6606583
– volume: 59
  start-page: 1
  year: 2016
  ident: ref82
  article-title: Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46
  publication-title: Official J. Eur. Union
– ident: ref63
  doi: 10.1109/TSE.2007.256941
– ident: ref64
  doi: 10.1007/s10664-011-9193-5
– ident: ref67
  doi: 10.1016/j.artint.2018.07.007
– ident: ref100
  doi: 10.1109/TSE.2016.2553030
– year: 2019
  ident: ref29
  article-title: iBreakDown: Uncertainty of global explanations for non-additive predictive models
– ident: ref72
  doi: 10.21236/ad0648750
– ident: ref15
  doi: 10.5120/ijais12-450574
– ident: ref8
  article-title: breakDown: Model agnostic explainers for individual predictions. R package version 0.1.6.
– ident: ref44
  doi: 10.1109/ICACTE.2008.204
– ident: ref56
  doi: 10.1016/j.tics.2006.08.004
– ident: ref55
  doi: 10.4135/9781483348957
– ident: ref94
  article-title: ScottKnottESD : The scott-knott effect size difference (ESD) Test. R package version 2.0
– ident: ref77
  doi: 10.1016/s0020-7373(87)80053-6
– ident: ref31
  doi: 10.1145/1656274.1656278
– ident: ref86
  doi: 10.1016/j.ins.2011.01.039
– ident: ref106
  doi: 10.1109/ESEM.2009.5316006
– volume: 1
  volume-title: The Elements of Statistical Learning
  year: 2001
  ident: ref23
– ident: ref93
  doi: 10.1109/ICSE.2015.139
– ident: ref48
  doi: 10.1146/annurev.psych.50.1.537
– ident: ref5
  doi: 10.1016/j.jss.2009.06.055
– ident: ref38
  doi: 10.1145/1390817.1390822
– ident: ref25
  doi: 10.1016/j.infsof.2016.04.017
– year: 2016
  ident: ref83
  article-title: lime: Explaining the predictions of any machine learning classifier
– start-page: 4765
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref57
  article-title: A unified approach to interpreting model predictions
– ident: ref102
  doi: 10.1109/TSE.2018.2794977
– start-page: 1
  year: 2017
  ident: ref47
  article-title: Simpler transfer learning (using Bellwethers)
– ident: ref90
  doi: 10.32614/rj-2018-072
– ident: ref70
  doi: 10.1109/TSE.2017.2720603
– ident: ref65
  doi: 10.1109/MS.2013.86
– ident: ref89
  doi: 10.1109/TSE.2012.43
– ident: ref39
  doi: 10.1109/TSE.2019.2891758
– ident: ref73
  doi: 10.1007/s10664-012-9218-8
– ident: ref41
  doi: 10.1109/ICSME.2018.00083
– ident: ref33
  doi: 10.1148/radiology.143.1.7063747
– ident: ref34
  doi: 10.1007/978-3-319-19425-7
– ident: ref69
  doi: 10.1145/1134285.1134349
– ident: ref10
  doi: 10.1145/2025113.2025119
– start-page: 96
  volume-title: Proc. ICML Workshop Hum. Interpretability Mach. Learn.
  ident: ref54
  article-title: The Mythos of model interpretability
– ident: ref61
  doi: 10.1145/1540438.1540448
– ident: ref79
  doi: 10.1145/1985793.1985860
– ident: ref99
  doi: 10.1145/2884781.2884857
– ident: ref43
  doi: 10.1109/TSE.2012.70
– ident: ref37
  doi: 10.1109/ICSME.2017.51
– ident: ref68
  doi: 10.18637/jss.v040.i06
– ident: ref81
  doi: 10.1109/MSR.2017.4
– ident: ref28
  doi: 10.1109/MSR.2017.18
– ident: ref95
  doi: 10.1145/2889160.2889256
– ident: ref104
  doi: 10.1145/2884781.2884852
SSID ssj0005775
ssib053395008
Score 2.6168985
Snippet Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166
SubjectTerms Algorithms
Analytical models
Decision analysis
Decision making
defect prediction models
Electric breakdown
Empirical analysis
Explainable software analytics
Lime
model-agnostic techniques
Open source software
Optimization
Prediction algorithms
Prediction models
Predictive models
Quality control
Software
Software algorithms
Software engineering
software quality assurance
Title An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models
URI https://ieeexplore.ieee.org/document/9044387
https://www.proquest.com/docview/2619023242
Volume 48
WOSCitedRecordID wos000742179000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1939-3520
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005775
  issn: 0098-5589
  databaseCode: RIE
  dateStart: 19750101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eDFqlWsVsnBi-C22Uea5Fi0xUMpBSv0tiTZWSjUtvQh-O9N0t2KKIK3PUyWZb5NZr7MC-Aup7ESrhrHnnQqSJJEBTKzLMVoGeVaIMbCFwoP-HAoJhM5qsDDvhYGEX3yGbbco4_lZwuzdVdlbUmTJBb8AA447-xqtb7SOThnZX9MxoQsQ5JUtscvPUsEI9qKpLAWin0zQX6myo-D2FuXfu1_33UCx4UXSbo72E-hgvMzqJUTGkixYesw6M5J72059X1AiMsZ_CCLnLgBaLOg63Ls7AvIuOzjuibWhSVP6FI8yGjlYjgOt538-hxe-73x43NQzE8ITCTDTcAQjXVQjOa6k2GYiVDpjtWTMTLjWsosjxlGEiNMlOYhU9LSKZpbj0bxPDQ6voDqfDHHSyAKY6N17KBLLAVkQjCKVClhVBaFHdWAdqnS1BTNxd2Mi1nqSQaVqQUhdSCkBQgNuN-vWO4aa_whW3dK38sV-m5As0QtLXbeOnWMkHo38er3VddwFLkSBn-N0oTqZrXFGzg075vpenXrf6pPYhHJxg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gV58i_WZgxfBtdls0k2ORVsq1iJYwduSZGehoK20VfDfm6S7FVEEb3uYLMt8m8x8mRfAWUETLX01jjvpdMQ515HKHUuxRrHCSMREhkLhbtrryacndb8AF_NaGEQMyWd46R9DLD8f2Td_VVZXlPNEpouwLDhndFat9ZXQkaai6pAphFRVUJKqev-h5aggo5dMSWejxDcjFKaq_DiKg31pb_zvyzZhvfQjSXMG_BYs4HAbNqoZDaTcsjvQbQ5J6-V1EDqBEJ81-EFGBfEj0J6jps-ycy8g_aqT64Q4J5Zco0_yIPdjH8XxyM3kJ7vw2G71rzpROUEhskzF00ggWueiWJOaRo5xLmNtGk5P1qo8NUrlRSKQKWTItUljoZUjVLRwPo1Oi9iaZA-WhqMh7gPRmFhjEg8edyRQSCkoUq2l1TmLG7oG9UqlmS3bi_spF89ZoBlUZQ6EzIOQlSDU4Hy-4nXWWuMP2R2v9Llcqe8aHFWoZeXem2SeE9LgKB78vuoUVjv9u27WvendHsIa8wUN4VLlCJam4zc8hhX7Ph1MxifhB_sEC2vNDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Study+of+Model-Agnostic+Techniques+for+Defect+Prediction+Models&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Jiarpakdee%2C+Jirayus&rft.au=Tantithamthavorn%2C+Chakkrit+Kla&rft.au=Dam%2C+Hoa+Khanh&rft.au=Grundy%2C+John&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=48&rft.issue=1&rft.spage=166&rft.epage=185&rft_id=info:doi/10.1109%2FTSE.2020.2982385&rft.externalDocID=9044387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon