An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models
Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why...
Uloženo v:
| Vydáno v: | IEEE transactions on software engineering Ročník 48; číslo 1; s. 166 - 185 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2022
IEEE Computer Society |
| Témata: | |
| ISSN: | 0098-5589, 1939-3520 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why models make such a prediction and fail to uphold the privacy laws in terms of the requirement to explain any decision made by an algorithm. In this paper, we empirically evaluate three model-agnostic techniques, i.e., two state-of-the-art Local Interpretability Model-agnostic Explanations technique (LIME) and BreakDown techniques, and our improvement of LIME with Hyper Parameter Optimisation (LIME-HPO). Through a case study of 32 highly-curated defect datasets that span across 9 open-source software systems, we conclude that (1) model-agnostic techniques are needed to explain individual predictions of defect models; (2) instance explanations generated by model-agnostic techniques are mostly overlapping (but not exactly the same) with the global explanation of defect models and reliable when they are re-generated; (3) model-agnostic techniques take less than a minute to generate instance explanations; and (4) more than half of the practitioners perceive that the contrastive explanations are necessary and useful to understand the predictions of defect models. Since the implementation of the studied model-agnostic techniques is available in both Python and R, we recommend model-agnostic techniques be used in the future. |
|---|---|
| AbstractList | Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made by software analytics to date have not been explained and justified. Specifically, current defect prediction models still fail to explain why models make such a prediction and fail to uphold the privacy laws in terms of the requirement to explain any decision made by an algorithm. In this paper, we empirically evaluate three model-agnostic techniques, i.e., two state-of-the-art Local Interpretability Model-agnostic Explanations technique (LIME) and BreakDown techniques, and our improvement of LIME with Hyper Parameter Optimisation (LIME-HPO). Through a case study of 32 highly-curated defect datasets that span across 9 open-source software systems, we conclude that (1) model-agnostic techniques are needed to explain individual predictions of defect models; (2) instance explanations generated by model-agnostic techniques are mostly overlapping (but not exactly the same) with the global explanation of defect models and reliable when they are re-generated; (3) model-agnostic techniques take less than a minute to generate instance explanations; and (4) more than half of the practitioners perceive that the contrastive explanations are necessary and useful to understand the predictions of defect models. Since the implementation of the studied model-agnostic techniques is available in both Python and R, we recommend model-agnostic techniques be used in the future. |
| Author | Jiarpakdee, Jirayus Tantithamthavorn, Chakkrit Kla Dam, Hoa Khanh Grundy, John |
| Author_xml | – sequence: 1 givenname: Jirayus orcidid: 0000-0002-2907-915X surname: Jiarpakdee fullname: Jiarpakdee, Jirayus email: jirayus.jiarpakdee@monash.edu organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia – sequence: 2 givenname: Chakkrit Kla orcidid: 0000-0002-5516-9984 surname: Tantithamthavorn fullname: Tantithamthavorn, Chakkrit Kla email: chakkrit@monash.edu organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia – sequence: 3 givenname: Hoa Khanh orcidid: 0000-0003-4246-0526 surname: Dam fullname: Dam, Hoa Khanh email: hoa@uow.edu.au organization: Faculty of Engineering and Information Sciences, School of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia – sequence: 4 givenname: John orcidid: 0000-0003-4928-7076 surname: Grundy fullname: Grundy, John email: john.grundy@monash.edu organization: Faculty of Information Technology, Monash University, Clayton, VIC, Australia |
| BookMark | eNp9kDtPwzAURi1UJEphR2KxxJziRxzHY1XKQyoCqWW2HOcGXLVxsd2h_55EqRgYmLycc_3pXKJR61tA6IaSKaVE3a9XiykjjEyZKhkvxRkaU8VVxgUjIzQmRJWZEKW6QJcxbgghQkoxRstZixe7vQvOmi1epUN9xL7Br76GbTb7bH1MzuI12K_WfR8g4sYH_AAN2ITfA9TOJufbgY9X6Lwx2wjXp3eCPh4X6_lztnx7epnPlplliqZMANiCSlvJqqiB1iU1VdHNsVbVslKqbrgApoBBbipJhVGsoKSRTBrZUFvxCbob7u6D70clvfGH0HZf6o5UhHGWs44qBsoGH2OARluXTD83BeO2mhLdl9NdOd2X06dynUj-iPvgdiYc_1NuB8UBwC-uSJ7zUvIfoUF62A |
| CODEN | IESEDJ |
| CitedBy_id | crossref_primary_10_1177_1088467X241301390 crossref_primary_10_1109_TSE_2020_3047088 crossref_primary_10_1109_ACCESS_2022_3145799 crossref_primary_10_1007_s10515_020_00277_4 crossref_primary_10_3390_biomedinformatics2010009 crossref_primary_10_1109_TSE_2022_3144348 crossref_primary_10_1109_TSE_2023_3305244 crossref_primary_10_1049_iet_sen_2019_0389 crossref_primary_10_1016_j_jss_2020_110847 crossref_primary_10_1109_TSE_2021_3093761 crossref_primary_10_1109_TSE_2022_3173346 crossref_primary_10_1145_3712190 crossref_primary_10_1016_j_infsof_2022_107016 crossref_primary_10_1145_3719006 crossref_primary_10_3390_app13053088 crossref_primary_10_1145_3680472 crossref_primary_10_1109_TR_2025_3548107 crossref_primary_10_1016_j_jlp_2024_105511 crossref_primary_10_1016_j_aap_2025_108220 crossref_primary_10_1145_3544968 crossref_primary_10_1007_s10664_020_09848_1 crossref_primary_10_1145_3660809 crossref_primary_10_1007_s11219_025_09727_2 crossref_primary_10_1109_TSE_2021_3056941 crossref_primary_10_1016_j_jss_2024_112159 crossref_primary_10_1109_TSE_2022_3220740 crossref_primary_10_3390_info16090774 crossref_primary_10_1145_3641540 crossref_primary_10_1016_j_engappai_2023_106187 crossref_primary_10_1016_j_eswa_2023_121640 crossref_primary_10_1155_2022_8167821 crossref_primary_10_1109_ACCESS_2025_3567140 crossref_primary_10_1109_TR_2024_3455390 crossref_primary_10_3390_computers13020052 crossref_primary_10_1007_s11219_023_09656_y crossref_primary_10_1007_s10515_025_00510_y crossref_primary_10_1109_TSE_2020_3023177 crossref_primary_10_1145_3763230 crossref_primary_10_1145_3678167 crossref_primary_10_1016_j_jss_2024_112182 crossref_primary_10_1145_3731559 crossref_primary_10_1002_smr_2699 crossref_primary_10_1002_smr_2616 crossref_primary_10_1007_s10664_022_10261_z crossref_primary_10_1109_MS_2024_3505544 crossref_primary_10_1145_3582572 crossref_primary_10_1109_TSE_2021_3062968 crossref_primary_10_1007_s10515_024_00424_1 crossref_primary_10_1002_stvr_1784 crossref_primary_10_1371_journal_pone_0307112 crossref_primary_10_1007_s10664_022_10224_4 crossref_primary_10_1007_s11390_021_1596_1 crossref_primary_10_1007_s41870_025_02403_5 crossref_primary_10_1145_3707456 crossref_primary_10_1007_s10270_024_01251_4 crossref_primary_10_1016_j_compeleceng_2024_109246 crossref_primary_10_1109_TSE_2022_3158252 crossref_primary_10_1016_j_jss_2024_111968 crossref_primary_10_1109_MS_2023_3246686 crossref_primary_10_1109_MS_2021_3072088 crossref_primary_10_1007_s13198_021_01582_1 crossref_primary_10_3390_s23031074 |
| Cites_doi | 10.1109/ASWEC.2013.33 10.1109/ICSE.2013.6606589 10.1109/ICSME.2018.00018 10.1016/j.tics.2018.12.004 10.1109/ICST.2013.38 10.1109/TSE.2011.103 10.1023/A:1008202821328 10.1145/3236009 10.1145/1134285.1134336 10.1007/978-1-84800-044-5_3 10.1109/MSR.2012.6224300 10.1017/S1358246100005130 10.1109/MSR.2010.5463279 10.1016/S0304-3800(02)00257-0 10.1007/978-1-4612-4380-9_16 10.1109/TSE.2018.2877612 10.1145/1540438.1540448 10.1016/j.jss.2018.12.001 10.1109/FIE.2016.7757406 10.1109/TSE.2012.83 10.1109/ISSREW.2016.30 10.1007/978-1-4899-4541-9 10.1109/TSE.2016.2584050 10.1109/ICSE.2019.00075 10.1145/3183519.3183547 10.1111/1468-5914.00197 10.1007/s10515-015-0179-1 10.1145/1082983.1083172 10.1145/2950290.2950353 10.1109/ICSE.2015.91 10.1007/s10664-020-09808-9 10.1145/2597073.2597076 10.1515/9780691221489 10.1109/TSE.2008.35 10.1186/1471-2105-9-307 10.1145/2939672.2939778 10.1109/SANER.2015.7081824 10.1145/1595696.1595713 10.1016/j.jss.2007.07.040 10.1109/TSE.2018.2876537 10.2307/2699986 10.1145/1868328.1868336 10.4324/9781315807072 10.1145/3180155.3180197 10.1145/3236024.3236050 10.1109/MTAS.2005.1563500 10.3389/fnbot.2013.00021 10.1007/s10664-011-9173-9 10.1109/ICSE.2015.93 10.1109/ICSE.2013.6606583 10.1109/TSE.2007.256941 10.1007/s10664-011-9193-5 10.1016/j.artint.2018.07.007 10.1109/TSE.2016.2553030 10.21236/ad0648750 10.5120/ijais12-450574 10.1109/ICACTE.2008.204 10.1016/j.tics.2006.08.004 10.4135/9781483348957 10.1016/s0020-7373(87)80053-6 10.1145/1656274.1656278 10.1016/j.ins.2011.01.039 10.1109/ESEM.2009.5316006 10.1109/ICSE.2015.139 10.1146/annurev.psych.50.1.537 10.1016/j.jss.2009.06.055 10.1145/1390817.1390822 10.1016/j.infsof.2016.04.017 10.1109/TSE.2018.2794977 10.32614/rj-2018-072 10.1109/TSE.2017.2720603 10.1109/MS.2013.86 10.1109/TSE.2012.43 10.1109/TSE.2019.2891758 10.1007/s10664-012-9218-8 10.1109/ICSME.2018.00083 10.1148/radiology.143.1.7063747 10.1007/978-3-319-19425-7 10.1145/1134285.1134349 10.1145/2025113.2025119 10.1145/1985793.1985860 10.1145/2884781.2884857 10.1109/TSE.2012.70 10.1109/ICSME.2017.51 10.18637/jss.v040.i06 10.1109/MSR.2017.4 10.1109/MSR.2017.18 10.1145/2889160.2889256 10.1145/2884781.2884852 |
| ContentType | Journal Article |
| Copyright | Copyright IEEE Computer Society 2022 |
| Copyright_xml | – notice: Copyright IEEE Computer Society 2022 |
| DBID | 97E RIA RIE AAYXX CITATION JQ2 K9. |
| DOI | 10.1109/TSE.2020.2982385 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1939-3520 |
| EndPage | 185 |
| ExternalDocumentID | 10_1109_TSE_2020_2982385 9044387 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DE200100941 funderid: 10.13039/501100000923 – fundername: ARC Laureate Fellowship grantid: FL190100035 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 8R4 8R5 97E AAJGR AARMG AASAJ AAWTH ABAZT ABPPZ ABQJQ ABVLG ACGFO ACGOD ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BKOMP BPEOZ CS3 DU5 EBS EDO EJD HZ~ I-F IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P Q2X RIA RIE RNS RXW S10 TAE TN5 TWZ UHB UPT WH7 YZZ AAYXX CITATION JQ2 K9. |
| ID | FETCH-LOGICAL-c291t-5eec617cb7b6de1d81ab6577cc9d7b99df35e29e2e4ab715a92610f727a7f1cb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742179000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0098-5589 |
| IngestDate | Fri Oct 03 03:31:16 EDT 2025 Sat Nov 29 03:10:25 EST 2025 Tue Nov 18 21:49:35 EST 2025 Wed Aug 27 03:03:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-5eec617cb7b6de1d81ab6577cc9d7b99df35e29e2e4ab715a92610f727a7f1cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4928-7076 0000-0002-5516-9984 0000-0002-2907-915X 0000-0003-4246-0526 |
| PQID | 2619023242 |
| PQPubID | 21418 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSE_2020_2982385 crossref_primary_10_1109_TSE_2020_2982385 proquest_journals_2619023242 ieee_primary_9044387 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-1 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on software engineering |
| PublicationTitleAbbrev | TSE |
| PublicationYear | 2022 |
| Publisher | IEEE IEEE Computer Society |
| Publisher_xml | – name: IEEE – name: IEEE Computer Society |
| References | ref56 ref59 ref58 ref53 ref52 ref55 ref51 ref50 ref46 ref45 ref48 ref42 ref41 Storn (ref91) 1997; 11 ref44 ref43 ref7 ref4 ref3 ref5 ref100 Gosiewska (ref29) 2019 ref101 ref40 Hilton (ref35) 2005 ref34 Bas (ref6) 1980 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 Biecek (ref9) 2017 Biecek (ref8) Quinlan (ref78) 1993 Kuhn (ref49) 2017 Lundberg (ref57) ref24 ref26 ref25 ref20 Lipton (ref54) ref28 ref27 Ribeiro (ref84) 2016 Breiman (ref11) ref13 ref12 ref15 ref14 ref97 ref96 Ribeiro (ref83) 2016 ref99 ref10 ref98 ref17 ref19 Shihab (ref88) 2012 ref18 Tantithamthavorn (ref94) ref93 ref92 ref95 ref90 ref89 ref86 ref85 ref87 Dam (ref16) Pedersen (ref75) ref81 ref80 ref79 ref108 Krishna (ref47) 2017 ref109 ref106 ref107 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 Regulation (ref82) 2016; 59 Fox (ref21) ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref113 French (ref22) 2014 ref65 Friedman (ref23) 2001; 1 ref60 ref62 ref61 |
| References_xml | – ident: ref12 doi: 10.1109/ASWEC.2013.33 – ident: ref80 doi: 10.1109/ICSE.2013.6606589 – ident: ref42 doi: 10.1109/ICSME.2018.00018 – ident: ref36 doi: 10.1016/j.tics.2018.12.004 – ident: ref13 doi: 10.1109/ICST.2013.38 – ident: ref75 article-title: lime: Local interpretable model-agnostic explanations. R package version 0.4.0 – ident: ref32 doi: 10.1109/TSE.2011.103 – ident: ref1 article-title: An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models – volume: 11 start-page: 341 issue: 4 year: 1997 ident: ref91 article-title: Differential evolutionA simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – ident: ref30 doi: 10.1145/3236009 – ident: ref4 doi: 10.1145/1134285.1134336 – ident: ref45 doi: 10.1007/978-1-84800-044-5_3 – ident: ref7 doi: 10.1109/MSR.2012.6224300 – ident: ref53 doi: 10.1017/S1358246100005130 – ident: ref17 doi: 10.1109/MSR.2010.5463279 – ident: ref26 doi: 10.1016/S0304-3800(02)00257-0 – ident: ref110 doi: 10.1007/978-1-4612-4380-9_16 – ident: ref108 doi: 10.1109/TSE.2018.2877612 – ident: ref60 doi: 10.1145/1540438.1540448 – year: 1993 ident: ref78 article-title: C4.5: Programs for Machine Learning – ident: ref74 doi: 10.1016/j.jss.2018.12.001 – ident: ref103 article-title: stats : The R stats package. R Package. Version 3.4.0 – ident: ref76 doi: 10.1109/FIE.2016.7757406 – ident: ref62 doi: 10.1109/TSE.2012.83 – ident: ref40 doi: 10.1109/ISSREW.2016.30 – year: 2016 ident: ref84 article-title: Model-agnostic interpretability of machine learning – ident: ref19 doi: 10.1007/978-1-4899-4541-9 – ident: ref101 doi: 10.1109/TSE.2016.2584050 – ident: ref112 doi: 10.1109/ICSE.2019.00075 – ident: ref96 doi: 10.1145/3183519.3183547 – ident: ref107 doi: 10.1111/1468-5914.00197 – ident: ref109 doi: 10.1007/s10515-015-0179-1 – start-page: 44 volume-title: The Psychology of Counterfactual Thinking year: 2005 ident: ref35 article-title: The course of events: Counterfactuals, causal sequences, and explanation – volume-title: Wiley StatsRef: Statistics Reference Online year: 2014 ident: ref22 article-title: Decisionanalysis – ident: ref46 doi: 10.1145/1082983.1083172 – ident: ref21 article-title: car: Companion to applied regression. R package version 3.0-2 – ident: ref111 doi: 10.1145/2950290.2950353 – ident: ref27 doi: 10.1109/ICSE.2015.91 – ident: ref3 doi: 10.1007/s10664-020-09808-9 – year: 2017 ident: ref9 article-title: pyBreakDown: Python implementation of R package breakDown – ident: ref58 doi: 10.1145/2597073.2597076 – ident: ref87 doi: 10.1515/9780691221489 – ident: ref51 doi: 10.1109/TSE.2008.35 – ident: ref92 doi: 10.1186/1471-2105-9-307 – ident: ref11 article-title: randomForest : Breiman and Cutlers random forests for classification and regression. R package version 4.612 – ident: ref85 doi: 10.1145/2939672.2939778 – ident: ref105 doi: 10.1109/SANER.2015.7081824 – ident: ref113 doi: 10.1145/1595696.1595713 – ident: ref20 doi: 10.1016/j.jss.2007.07.040 – ident: ref97 doi: 10.1109/TSE.2018.2876537 – ident: ref24 doi: 10.2307/2699986 – ident: ref59 doi: 10.1145/1868328.1868336 – ident: ref50 doi: 10.4324/9781315807072 – ident: ref2 doi: 10.1145/3180155.3180197 – ident: ref14 doi: 10.1145/3236024.3236050 – year: 2017 ident: ref49 article-title: caret: Classification and regression training. R package version 6.078 – ident: ref66 doi: 10.1109/MTAS.2005.1563500 – ident: ref71 doi: 10.3389/fnbot.2013.00021 – year: 2012 ident: ref88 article-title: An exploration of challenges limiting pragmatic software defect prediction – ident: ref18 doi: 10.1007/s10664-011-9173-9 – ident: ref98 doi: 10.1109/ICSE.2015.93 – start-page: 53 volume-title: Proc. Int. Conf. Softw. Eng.: New Ideas Emerg. Results ident: ref16 article-title: Explainable software analytics – volume-title: The Scientific Image year: 1980 ident: ref6 – ident: ref52 doi: 10.1109/ICSE.2013.6606583 – volume: 59 start-page: 1 year: 2016 ident: ref82 article-title: Regulation (EU) 2016/679 of the European parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46 publication-title: Official J. Eur. Union – ident: ref63 doi: 10.1109/TSE.2007.256941 – ident: ref64 doi: 10.1007/s10664-011-9193-5 – ident: ref67 doi: 10.1016/j.artint.2018.07.007 – ident: ref100 doi: 10.1109/TSE.2016.2553030 – year: 2019 ident: ref29 article-title: iBreakDown: Uncertainty of global explanations for non-additive predictive models – ident: ref72 doi: 10.21236/ad0648750 – ident: ref15 doi: 10.5120/ijais12-450574 – ident: ref8 article-title: breakDown: Model agnostic explainers for individual predictions. R package version 0.1.6. – ident: ref44 doi: 10.1109/ICACTE.2008.204 – ident: ref56 doi: 10.1016/j.tics.2006.08.004 – ident: ref55 doi: 10.4135/9781483348957 – ident: ref94 article-title: ScottKnottESD : The scott-knott effect size difference (ESD) Test. R package version 2.0 – ident: ref77 doi: 10.1016/s0020-7373(87)80053-6 – ident: ref31 doi: 10.1145/1656274.1656278 – ident: ref86 doi: 10.1016/j.ins.2011.01.039 – ident: ref106 doi: 10.1109/ESEM.2009.5316006 – volume: 1 volume-title: The Elements of Statistical Learning year: 2001 ident: ref23 – ident: ref93 doi: 10.1109/ICSE.2015.139 – ident: ref48 doi: 10.1146/annurev.psych.50.1.537 – ident: ref5 doi: 10.1016/j.jss.2009.06.055 – ident: ref38 doi: 10.1145/1390817.1390822 – ident: ref25 doi: 10.1016/j.infsof.2016.04.017 – year: 2016 ident: ref83 article-title: lime: Explaining the predictions of any machine learning classifier – start-page: 4765 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref57 article-title: A unified approach to interpreting model predictions – ident: ref102 doi: 10.1109/TSE.2018.2794977 – start-page: 1 year: 2017 ident: ref47 article-title: Simpler transfer learning (using Bellwethers) – ident: ref90 doi: 10.32614/rj-2018-072 – ident: ref70 doi: 10.1109/TSE.2017.2720603 – ident: ref65 doi: 10.1109/MS.2013.86 – ident: ref89 doi: 10.1109/TSE.2012.43 – ident: ref39 doi: 10.1109/TSE.2019.2891758 – ident: ref73 doi: 10.1007/s10664-012-9218-8 – ident: ref41 doi: 10.1109/ICSME.2018.00083 – ident: ref33 doi: 10.1148/radiology.143.1.7063747 – ident: ref34 doi: 10.1007/978-3-319-19425-7 – ident: ref69 doi: 10.1145/1134285.1134349 – ident: ref10 doi: 10.1145/2025113.2025119 – start-page: 96 volume-title: Proc. ICML Workshop Hum. Interpretability Mach. Learn. ident: ref54 article-title: The Mythos of model interpretability – ident: ref61 doi: 10.1145/1540438.1540448 – ident: ref79 doi: 10.1145/1985793.1985860 – ident: ref99 doi: 10.1145/2884781.2884857 – ident: ref43 doi: 10.1109/TSE.2012.70 – ident: ref37 doi: 10.1109/ICSME.2017.51 – ident: ref68 doi: 10.18637/jss.v040.i06 – ident: ref81 doi: 10.1109/MSR.2017.4 – ident: ref28 doi: 10.1109/MSR.2017.18 – ident: ref95 doi: 10.1145/2889160.2889256 – ident: ref104 doi: 10.1145/2884781.2884852 |
| SSID | ssj0005775 ssib053395008 |
| Score | 2.6168985 |
| Snippet | Software analytics have empowered software organisations to support a wide range of improved decision-making and policy-making. However, such predictions made... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 166 |
| SubjectTerms | Algorithms Analytical models Decision analysis Decision making defect prediction models Electric breakdown Empirical analysis Explainable software analytics Lime model-agnostic techniques Open source software Optimization Prediction algorithms Prediction models Predictive models Quality control Software Software algorithms Software engineering software quality assurance |
| Title | An Empirical Study of Model-Agnostic Techniques for Defect Prediction Models |
| URI | https://ieeexplore.ieee.org/document/9044387 https://www.proquest.com/docview/2619023242 |
| Volume | 48 |
| WOSCitedRecordID | wos000742179000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1939-3520 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005775 issn: 0098-5589 databaseCode: RIE dateStart: 19750101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eDFqlWsVsnBi-C22Uea5Fi0xUMpBSv0tiTZWSjUtvQh-O9N0t2KKIK3PUyWZb5NZr7MC-Aup7ESrhrHnnQqSJJEBTKzLMVoGeVaIMbCFwoP-HAoJhM5qsDDvhYGEX3yGbbco4_lZwuzdVdlbUmTJBb8AA447-xqtb7SOThnZX9MxoQsQ5JUtscvPUsEI9qKpLAWin0zQX6myo-D2FuXfu1_33UCx4UXSbo72E-hgvMzqJUTGkixYesw6M5J72059X1AiMsZ_CCLnLgBaLOg63Ls7AvIuOzjuibWhSVP6FI8yGjlYjgOt538-hxe-73x43NQzE8ITCTDTcAQjXVQjOa6k2GYiVDpjtWTMTLjWsosjxlGEiNMlOYhU9LSKZpbj0bxPDQ6voDqfDHHSyAKY6N17KBLLAVkQjCKVClhVBaFHdWAdqnS1BTNxd2Mi1nqSQaVqQUhdSCkBQgNuN-vWO4aa_whW3dK38sV-m5As0QtLXbeOnWMkHo38er3VddwFLkSBn-N0oTqZrXFGzg075vpenXrf6pPYhHJxg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58gV58i_WZgxfBtdls0k2ORVsq1iJYwduSZGehoK20VfDfm6S7FVEEb3uYLMt8m8x8mRfAWUETLX01jjvpdMQ515HKHUuxRrHCSMREhkLhbtrryacndb8AF_NaGEQMyWd46R9DLD8f2Td_VVZXlPNEpouwLDhndFat9ZXQkaai6pAphFRVUJKqev-h5aggo5dMSWejxDcjFKaq_DiKg31pb_zvyzZhvfQjSXMG_BYs4HAbNqoZDaTcsjvQbQ5J6-V1EDqBEJ81-EFGBfEj0J6jps-ycy8g_aqT64Q4J5Zco0_yIPdjH8XxyM3kJ7vw2G71rzpROUEhskzF00ggWueiWJOaRo5xLmNtGk5P1qo8NUrlRSKQKWTItUljoZUjVLRwPo1Oi9iaZA-WhqMh7gPRmFhjEg8edyRQSCkoUq2l1TmLG7oG9UqlmS3bi_spF89ZoBlUZQ6EzIOQlSDU4Hy-4nXWWuMP2R2v9Llcqe8aHFWoZeXem2SeE9LgKB78vuoUVjv9u27WvendHsIa8wUN4VLlCJam4zc8hhX7Ph1MxifhB_sEC2vNDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Study+of+Model-Agnostic+Techniques+for+Defect+Prediction+Models&rft.jtitle=IEEE+transactions+on+software+engineering&rft.au=Jiarpakdee%2C+Jirayus&rft.au=Tantithamthavorn%2C+Chakkrit+Kla&rft.au=Dam%2C+Hoa+Khanh&rft.au=Grundy%2C+John&rft.date=2022-01-01&rft.pub=IEEE&rft.issn=0098-5589&rft.volume=48&rft.issue=1&rft.spage=166&rft.epage=185&rft_id=info:doi/10.1109%2FTSE.2020.2982385&rft.externalDocID=9044387 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-5589&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-5589&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-5589&client=summon |