Hyers–Ulam Stability of Linear Homogeneous Quaternion-Valued Difference Equations

In this paper, we consider the Hyers–Ulam stability of the first-order linear homogeneous quaternion matrix difference equation. Furthermore, we prove the Hyers-Ulam stability of the second-order linear homogeneous quaternion-valued forward and backward difference equation by converting them into th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Qualitative theory of dynamical systems Ročník 22; číslo 3
Hlavní autoři: Wang, Jiangnan, Wang, JinRong, Liu, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.09.2023
Témata:
ISSN:1575-5460, 1662-3592
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider the Hyers–Ulam stability of the first-order linear homogeneous quaternion matrix difference equation. Furthermore, we prove the Hyers-Ulam stability of the second-order linear homogeneous quaternion-valued forward and backward difference equation by converting them into the first-order quaternion matrix difference equation. Finally, some examples are given to support the theoretical results.
ISSN:1575-5460
1662-3592
DOI:10.1007/s12346-023-00818-8