MLNav: Learning to Safely Navigate on Martian Terrains

We present MLNav , a learning-enhanced path planning framework for safety-critical and resource-limited systems operating in complex environments, such as rovers navigating on Mars. MLNav makes judicious use of machine learning to enhance the efficiency of path planning while fully respecting safety...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 7; číslo 2; s. 5461 - 5468
Hlavní autoři: Daftry, Shreyansh, Abcouwer, Neil, Sesto, Tyler Del, Venkatraman, Siddarth, Song, Jialin, Igel, Lucas, Byon, Amos, Rosolia, Ugo, Yue, Yisong, Ono, Masahiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present MLNav , a learning-enhanced path planning framework for safety-critical and resource-limited systems operating in complex environments, such as rovers navigating on Mars. MLNav makes judicious use of machine learning to enhance the efficiency of path planning while fully respecting safety constraints. In particular, the dominant computational cost in such safety-critical settings is running a model-based safety checker on the proposed paths. Our learned search heuristic can simultaneously predict the feasibility for all path options in a single run, and the model-based safety checker is only invoked on the top-scoring paths. We validate in high-fidelity simulations using both real Martian terrain data collected by the Perseverance rover, as well as a suite of challenging synthetic terrains. Our experiments show that: (i) compared to the baseline ENav path planner on board the Perserverance rover, MLNav can provide a significant improvement in multiple key metrics, such as a 10x reduction in collision checks when navigating real Martian terrains, despite being trained with synthetic terrains; and (ii) MLNav can successfully navigate highly challenging terrains where the baseline ENav fails to find a feasible path before timing out.
AbstractList We present MLNav , a learning-enhanced path planning framework for safety-critical and resource-limited systems operating in complex environments, such as rovers navigating on Mars. MLNav makes judicious use of machine learning to enhance the efficiency of path planning while fully respecting safety constraints. In particular, the dominant computational cost in such safety-critical settings is running a model-based safety checker on the proposed paths. Our learned search heuristic can simultaneously predict the feasibility for all path options in a single run, and the model-based safety checker is only invoked on the top-scoring paths. We validate in high-fidelity simulations using both real Martian terrain data collected by the Perseverance rover, as well as a suite of challenging synthetic terrains. Our experiments show that: (i) compared to the baseline ENav path planner on board the Perserverance rover, MLNav can provide a significant improvement in multiple key metrics, such as a 10x reduction in collision checks when navigating real Martian terrains, despite being trained with synthetic terrains; and (ii) MLNav can successfully navigate highly challenging terrains where the baseline ENav fails to find a feasible path before timing out.
Author Daftry, Shreyansh
Ono, Masahiro
Byon, Amos
Abcouwer, Neil
Venkatraman, Siddarth
Igel, Lucas
Rosolia, Ugo
Song, Jialin
Yue, Yisong
Sesto, Tyler Del
Author_xml – sequence: 1
  givenname: Shreyansh
  orcidid: 0000-0002-0157-5944
  surname: Daftry
  fullname: Daftry, Shreyansh
  email: shreyansh.daftry@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, Institute of Technology, California, USA
– sequence: 2
  givenname: Neil
  surname: Abcouwer
  fullname: Abcouwer, Neil
  email: neil.abcouwer@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, Institute of Technology, California, USA
– sequence: 3
  givenname: Tyler Del
  surname: Sesto
  fullname: Sesto, Tyler Del
  email: tyler.del.sesto@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, Institute of Technology, California, USA
– sequence: 4
  givenname: Siddarth
  orcidid: 0000-0002-3607-2781
  surname: Venkatraman
  fullname: Venkatraman, Siddarth
  email: siddarthegreat@gmail.com
  organization: Manipal Institute of Technology, India
– sequence: 5
  givenname: Jialin
  surname: Song
  fullname: Song, Jialin
  email: jssong@caltech.edu
  organization: Institute of Technology, California, USA
– sequence: 6
  givenname: Lucas
  surname: Igel
  fullname: Igel, Lucas
  email: luke.igel@gmail.com
  organization: Massachusetts Institute of Technology, USA
– sequence: 7
  givenname: Amos
  surname: Byon
  fullname: Byon, Amos
  email: amos.j.byon@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, Institute of Technology, California, USA
– sequence: 8
  givenname: Ugo
  orcidid: 0000-0002-1682-0551
  surname: Rosolia
  fullname: Rosolia, Ugo
  email: urosolia@caltech.edu
  organization: Institute of Technology, California, USA
– sequence: 9
  givenname: Yisong
  surname: Yue
  fullname: Yue, Yisong
  email: yyue@caltech.edu
  organization: Institute of Technology, California, USA
– sequence: 10
  givenname: Masahiro
  surname: Ono
  fullname: Ono, Masahiro
  email: masahiro.ono@jpl.nasa.gov
  organization: Jet Propulsion Laboratory, Institute of Technology, California, USA
BookMark eNp9kM1LAzEQxYNUsNbeBS8Bz7vmextvpfgFWwWt55DNzpaUmq3ZVOh_75YWEQ-eZhjebx7vnaNBaAMgdElJTinRN-XrNGeEsZxTqZQUJ2jIeFFkvFBq8Gs_Q-OuWxFCqGQF13KI1Lx8tl-3uAQbgw9LnFr8ZhtY73B_90ubALcBz21M3ga8gBitD90FOm3suoPxcY7Q-_3dYvaYlS8PT7NpmTmmacpk7RoLBDQTMKlrNakqRogGSoCyglW6gEpb4JJWztnKCS0cCNUoUFZSUfMRuj783cT2cwtdMqt2G0NvaZgSRHDeR-tV5KByse26CI3ZRP9h485QYvYFmb4gsy_IHAvqEfUHcT7Z5NuQ-oDr_8CrA-gB4MdHF0xLovg3CWRzJw
CODEN IRALC6
CitedBy_id crossref_primary_10_1038_s41598_025_91107_8
crossref_primary_10_1109_TGRS_2024_3432533
crossref_primary_10_1109_TASE_2023_3297176
crossref_primary_10_3390_aerospace11080692
crossref_primary_10_3390_geosciences12060248
crossref_primary_10_54105_ijdm_A1643_05010525
crossref_primary_10_1109_LRA_2023_3281261
crossref_primary_10_1109_ACCESS_2023_3312021
crossref_primary_10_3390_rs17111924
crossref_primary_10_1016_j_engappai_2025_110690
crossref_primary_10_1016_j_artint_2023_104018
crossref_primary_10_1109_TAC_2022_3210871
crossref_primary_10_1016_j_asr_2025_05_034
crossref_primary_10_1109_LRA_2024_3387042
crossref_primary_10_2514_1_G008791
Cites_doi 10.1002/rob.21892
10.1109/ICRA.2016.7487116
10.1145/1015330.1015430
10.1109/IROS.2016.7759328
10.15607/RSS.2017.XIII.064
10.1109/ROBOT.1997.619371
10.1109/AERO.2007.352683
10.1007/978-3-030-66723-8_5
10.1109/IROS45743.2020.9341526
10.1109/AERO47225.2020.9172345
10.1002/rob.22011
10.1109/ICRA.2018.8460730
10.1109/ICRA.2018.8461096
10.1109/LRA.2021.3096758
10.1109/ICRA.2017.7989182
10.1029/2002JE002035
10.1109/TRO.2020.3006716
10.1007/978-3-319-50115-4_1
10.1177/0278364918781001
10.1007/978-3-319-24574-4_28
10.1145/3447928.3456653
10.1007/978-3-030-44051-0_4
10.1109/TRO.2020.2974094
10.1109/AERO50100.2021.9438337
10.1007/s10514-022-10039-8
10.1109/ACCESS.2014.2302442
10.1177/0278364917722396
10.1007/978-3-319-27702-8_26
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2022.3156654
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 5468
ExternalDocumentID 10_1109_LRA_2022_3156654
9729506
Genre orig-research
GrantInformation_xml – fundername: Raytheon
– fundername: JPL Research and Technology Development
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5dcfae0e924e8dd68bb2009e10e1272b97eb9ae351bccabc494ce46f6e6a514d3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000770589900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 15:46:16 EDT 2025
Sat Nov 29 06:03:16 EST 2025
Tue Nov 18 21:00:09 EST 2025
Wed Aug 27 02:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5dcfae0e924e8dd68bb2009e10e1272b97eb9ae351bccabc494ce46f6e6a514d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0157-5944
0000-0002-1682-0551
0000-0002-3607-2781
PQID 2640433377
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2640433377
crossref_primary_10_1109_LRA_2022_3156654
ieee_primary_9729506
crossref_citationtrail_10_1109_LRA_2022_3156654
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Levine (ref14) 2016; 17
ref35
ref12
ref34
ref15
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Dhiman (ref5) 2018
ref17
Gao (ref22) 2017
ref16
ref19
Smith (ref7) 2018
ref24
ref23
ref26
ref25
ref20
ref28
ref27
McHenry (ref1) 2020
ref29
ref8
ref9
ref4
ref3
ref6
Yao (ref21) 2019
Ziebart (ref18) 2008; 8
Doyle (ref36) 2013
References_xml – ident: ref32
  doi: 10.1002/rob.21892
– ident: ref28
  doi: 10.1109/ICRA.2016.7487116
– ident: ref17
  doi: 10.1145/1015330.1015430
– ident: ref20
  doi: 10.1109/IROS.2016.7759328
– volume: 17
  start-page: 1334
  issue: 1
  year: 2016
  ident: ref14
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J. Mach. Learn. Res.
– start-page: 3003
  volume-title: Proc. Meeting Amer. Astronomical Soc.
  year: 2020
  ident: ref1
  article-title: Mars 2020 autonomous rover navigation
– ident: ref24
  doi: 10.15607/RSS.2017.XIII.064
– ident: ref3
  doi: 10.1109/ROBOT.1997.619371
– ident: ref31
  doi: 10.1109/AERO.2007.352683
– ident: ref29
  doi: 10.1007/978-3-030-66723-8_5
– year: 2019
  ident: ref21
  article-title: Following social groups: Socially compliant autonomous navigation in dense crowds
– ident: ref27
  doi: 10.1109/IROS45743.2020.9341526
– year: 2018
  ident: ref5
  article-title: A critical investigation of deep reinforcement learning for navigation
– ident: ref34
  doi: 10.1109/AERO47225.2020.9172345
– ident: ref2
  doi: 10.1002/rob.22011
– ident: ref11
  doi: 10.1109/ICRA.2018.8460730
– volume: 8
  start-page: 1433
  year: 2008
  ident: ref18
  article-title: Maximum entropy inverse reinforcement learning
  publication-title: Aaai
– ident: ref23
  doi: 10.1109/ICRA.2018.8461096
– ident: ref8
  doi: 10.1109/LRA.2021.3096758
– ident: ref16
  doi: 10.1109/ICRA.2017.7989182
– ident: ref35
  doi: 10.1029/2002JE002035
– volume-title: Proc. Conf. Robot Learning. PMLR
  year: 2017
  ident: ref22
  article-title: Intention-net: Integrating planning and deep learning for goal-directed autonomous navigation
– ident: ref9
  doi: 10.1109/TRO.2020.3006716
– ident: ref15
  doi: 10.1007/978-3-319-50115-4_1
– ident: ref10
  doi: 10.1177/0278364918781001
– ident: ref33
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: Proc. Workshop Spacecraft Flight Softw.
  year: 2013
  ident: ref36
  article-title: High performance spaceflight computing (HPSC) next-generation space processor (NGSP): A joint investment of NASA and AFRL
– ident: ref6
  doi: 10.1145/3447928.3456653
– ident: ref25
  doi: 10.1007/978-3-030-44051-0_4
– ident: ref26
  doi: 10.1109/TRO.2020.2974094
– year: 2018
  ident: ref7
  article-title: Learning to navigate: Exploiting deep networks to inform sample-based planning during vision-based navigation
– ident: ref12
  doi: 10.1109/AERO50100.2021.9438337
– ident: ref4
  doi: 10.1007/s10514-022-10039-8
– ident: ref13
  doi: 10.1109/ACCESS.2014.2302442
– ident: ref19
  doi: 10.1177/0278364917722396
– ident: ref30
  doi: 10.1007/978-3-319-27702-8_26
SSID ssj0001527395
Score 2.343267
Snippet We present MLNav , a learning-enhanced path planning framework for safety-critical and resource-limited systems operating in complex environments, such as...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5461
SubjectTerms Computational modeling
Feasibility
Integrated planning and learning
Machine learning
Mars
Mars rovers
motion and path planning
Navigation
Path planning
Planning
Robots
Safety
Safety critical
space robotics and automation
Title MLNav: Learning to Safely Navigate on Martian Terrains
URI https://ieeexplore.ieee.org/document/9729506
https://www.proquest.com/docview/2640433377
Volume 7
WOSCitedRecordID wos000770589900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5sw4Me_DXF6Rw5eBGs68808TZkw8M2RCfsVprkVYTRytYNvPi3m7TdVBTBWyhJKN9r897LS74P4IIrxYTiviWoCixfMWUxyTxLSkwcrls8KcUmwvGYTaf8vgZXm7swiFgcPsNr0yxq-SqTS7NV1uU6EgwMv3Y9DGl5V-tzP8UwifFgXYm0eXf40NP5n-vqtDQwGrvfPE8hpfJj_S2cymDvf6-zD7tV8Eh6pbUPoIbpIex8oRRsAh0Nx_HqhlS8qc8kz8hjnODsjejnhk8DSZaSgj0gTskE50YjYnEET4P-5PbOqrQRLOlyJ7cCJZMYbdTpEzKlKBPC1DnQsdFxQ1fwEAWP0QscoW0kpM99iT5NKNJYx0jKO4ZGmqV4AkRoj0QTE_cZph3hC8mVtKW0Q-WomLkt6K5xi2RFHG70K2ZRkUDYPNJIRwbpqEK6BZebEa8lacYffZsG2U2_CtQWtNemiaq_ahHp4M3wrXlhePr7qDPYNnOXJ2va0MjnSzyHLbnKXxbzDtRH7_1O8dl8AFCIv-4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED6GCuqDv6Y4nZoHXwTr-ruNb0McE7siOmFvoUmuIoxWtm7gf2_SdlNRBN9CSUj5rs3d5ZLvAzinUoZcUtfgvvQMV4bSCEXoGEJgalHVomklNhHEcTga0YcGXC7vwiBiefgMr3SzrOXLXMz0VlmHqkjQ0_zaq57r2mZ1W-tzR0VziVFvUYs0aSd67KoM0LZVYuppld1vvqcUU_mxApdupbf9vxfaga06fCTdyt670MBsDza_kAo2wR9EcTK_JjVz6gspcvKUpDh-J-q5ZtRAkmek5A9IMjLEiVaJmO7Dc-92eNM3anUEQ9jUKgxPijRBE1UChaGUfsi5rnSgZaJlBzanAXKaoONZXFmJC5e6Al0_9dFPVJQknQNYyfIMD4Fw5ZP8VEd-mmuHu1xQKUwhzEBaMgntFnQWuDFRU4drBYsxK1MIkzKFNNNIsxrpFlwsR7xVtBl_9G1qZJf9alBb0F6YhtX_1ZSp8E0zrjlBcPT7qDNY7w8HEYvu4vtj2NDzVOds2rBSTGZ4AmtiXrxOJ6flx_MB7MjCBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLNav%3A+Learning+to+Safely+Navigate+on+Martian+Terrains&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Daftry%2C+Shreyansh&rft.au=Abcouwer%2C+Neil&rft.au=Tyler+Del+Sesto&rft.au=Venkatraman%2C+Siddarth&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=7&rft.issue=2&rft.spage=5461&rft_id=info:doi/10.1109%2FLRA.2022.3156654&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon