Deep Clustering With Variational Autoencoder

An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 27; s. 231 - 235
Hlavní autoři: Lim, Kart-Leong, Jiang, Xudong, Yi, Chenyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings.
AbstractList An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder does not pursue the same clustering goal as Kmeans or GMM. A recent work proposes to artificially re-align each point in the latent space of an autoencoder to its nearest class neighbors during training (Song et al. 2013). The resulting new latent space is found to be much more suitable for clustering, since clustering information is used. Inspired by previous works (Song et al. 2013), in this letter we propose several extensions to this technique. First, we propose a probabilistic approach to generalize Song's approach, such that Euclidean distance in the latent space is now represented by KL divergence. Second, as a consequence of this generalization we can now use probability distributions as inputs rather than points in the latent space. Third, we propose using Bayesian Gaussian mixture model for clustering in the latent space. We demonstrated our proposed method on digit recognition datasets, MNIST, USPS and SHVN as well as scene datasets, Scene15 and MIT67 with interesting findings.
Author Yi, Chenyu
Jiang, Xudong
Lim, Kart-Leong
Author_xml – sequence: 1
  givenname: Kart-Leong
  orcidid: 0000-0001-9050-2300
  surname: Lim
  fullname: Lim, Kart-Leong
  email: lkartl@yahoo.com.sg
  organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 2
  givenname: Xudong
  orcidid: 0000-0002-9104-2315
  surname: Jiang
  fullname: Jiang, Xudong
  email: exdjiang@ntu.edu.sg
  organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
– sequence: 3
  givenname: Chenyu
  orcidid: 0000-0001-5002-6549
  surname: Yi
  fullname: Yi, Chenyu
  email: yich0003@e.ntu.edu.sg
  organization: Rapid-Rich Object Search Lab, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
BookMark eNp9kL1PwzAQxS1UJNrCjsQSiZWU8zl27LEq5UOqBBJfo-UkDrgKSbGdgf-elFYMDEzvhve7e_cmZNR2rSXklMKMUlCXq8eHGQLCDJXgDOUBGVPOZYpM0NEwQw6pUiCPyCSENQBIKvmYXFxZu0kWTR-i9a59S15dfE9ejHcmuq41TTLvY2fbsqusPyaHtWmCPdnrlDxfL58Wt-nq_uZuMV-lJSoaU14JQGUlA8jqQTCnWDFOZcWyvDLMgCoKVco6kxYLDgpriVxQUxhRC1GwKTnf7d347rO3Iep11_shTNDIOCLNpMwGF-xcpe9C8LbWG-8-jP_SFPS2Ez10ored6H0nAyL-IKWLP49Gb1zzH3i2A5219veOVDwfgrNvgO1uQw
CODEN ISPLEM
CitedBy_id crossref_primary_10_1016_j_neucom_2021_08_128
crossref_primary_10_3390_app12063008
crossref_primary_10_1016_j_chemolab_2023_105029
crossref_primary_10_1016_j_compbiomed_2024_109632
crossref_primary_10_1109_TNNLS_2023_3307126
crossref_primary_10_1016_j_bspc_2023_105202
crossref_primary_10_1109_ACCESS_2020_3020844
crossref_primary_10_1016_j_engappai_2024_109562
crossref_primary_10_1016_j_sigpro_2024_109597
crossref_primary_10_1016_j_ins_2024_121371
crossref_primary_10_1038_s41598_024_76047_z
crossref_primary_10_1080_19466315_2024_2368787
crossref_primary_10_1016_j_patcog_2022_108611
crossref_primary_10_1088_2632_2153_ad622f
crossref_primary_10_1016_j_commatsci_2024_113056
crossref_primary_10_3390_pr12122760
crossref_primary_10_1016_j_patrec_2021_08_004
crossref_primary_10_1002_aps3_11559
crossref_primary_10_1016_j_imavis_2023_104746
crossref_primary_10_1109_TGRS_2024_3374597
crossref_primary_10_1016_j_physa_2025_130395
crossref_primary_10_1080_01431161_2022_2061317
crossref_primary_10_1007_s00371_024_03303_8
crossref_primary_10_1109_ACCESS_2021_3064854
crossref_primary_10_1109_TIM_2022_3227553
crossref_primary_10_1016_j_elerap_2023_101250
crossref_primary_10_1016_j_rineng_2025_105232
crossref_primary_10_1016_j_imavis_2024_105347
crossref_primary_10_1061_JAEEEZ_ASENG_4947
crossref_primary_10_1109_TFUZZ_2024_3462545
crossref_primary_10_1109_JSTARS_2020_3040218
crossref_primary_10_1016_j_rspp_2024_100154
crossref_primary_10_1109_TSM_2025_3579031
crossref_primary_10_1016_j_cie_2022_108695
crossref_primary_10_1109_ACCESS_2021_3115024
crossref_primary_10_1016_j_jnca_2020_102854
crossref_primary_10_1109_ACCESS_2024_3368795
crossref_primary_10_1016_j_geoen_2025_214170
crossref_primary_10_3390_e23111537
crossref_primary_10_1109_ACCESS_2022_3213674
crossref_primary_10_1109_ACCESS_2023_3238795
crossref_primary_10_3390_app14020719
crossref_primary_10_1016_j_knosys_2022_108827
crossref_primary_10_1631_FITEE_2200344
crossref_primary_10_3390_sym17020161
crossref_primary_10_1016_j_trc_2020_102834
crossref_primary_10_1007_s00138_022_01338_2
crossref_primary_10_1177_87552930221104838
crossref_primary_10_1109_TGRS_2023_3267070
crossref_primary_10_1007_s13042_022_01557_z
crossref_primary_10_1007_s10994_024_06683_z
crossref_primary_10_1016_j_asoc_2024_112107
crossref_primary_10_1109_RBME_2022_3185953
crossref_primary_10_1016_j_eswa_2025_128578
crossref_primary_10_1016_j_energy_2022_125969
crossref_primary_10_1016_j_neucom_2025_130901
Cites_doi 10.1109/LSP.2017.2697970
10.1016/j.patcog.2018.05.019
10.1109/LSP.2017.2672753
10.1109/ICASSP.2019.8683497
10.1109/TPAMI.2008.258
10.1109/ACCESS.2018.2848210
10.1109/TKDE.2005.198
10.1109/ICASSP.2019.8682823
10.1109/LSP.2018.2843295
10.1109/LSP.2017.2752459
10.1109/MSP.2010.939041
10.1109/TNNLS.2017.2747861
10.24963/ijcai.2017/273
10.1109/CVPR.2006.68
10.1109/5.726791
10.1109/IJCNN.2018.8489030
10.1007/978-3-319-71246-8_49
10.1109/TASLP.2019.2917232
10.1109/ICASSP.2019.8682546
10.1109/TASLP.2018.2797420
10.1109/CVPR.2009.5206537
10.1109/LSP.2019.2913022
10.1109/TPAMI.2019.2913863
10.1007/978-0-387-21606-5
10.1109/ACCESS.2019.2920592
10.1007/978-3-642-41822-8_15
10.1109/TSP.2019.2899294
10.1109/TIP.2018.2848470
10.1109/CVPR.2016.90
10.1109/TNNLS.2019.2900734
10.1109/LSP.2019.2929440
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2020.2965328
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 235
ExternalDocumentID 10_1109_LSP_2020_2965328
8957256
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5d6029e83004fe832712d3518d347da3a09bb9c8f48e2b5092f82561aba6f66b3
IEDL.DBID RIE
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000516622400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Sun Nov 09 08:25:46 EST 2025
Sat Nov 29 01:48:53 EST 2025
Tue Nov 18 19:48:08 EST 2025
Wed Aug 27 02:32:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5d6029e83004fe832712d3518d347da3a09bb9c8f48e2b5092f82561aba6f66b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9104-2315
0000-0001-5002-6549
0000-0001-9050-2300
PQID 2352214884
PQPubID 75747
PageCount 5
ParticipantIDs proquest_journals_2352214884
crossref_primary_10_1109_LSP_2020_2965328
crossref_citationtrail_10_1109_LSP_2020_2965328
ieee_primary_8957256
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref15
ref36
ref14
ref31
ref30
ref33
maddison (ref25) 2016
ref32
yang (ref37) 0; 70
ref10
lim (ref24) 2017
kingma (ref19) 0
ref2
ref1
ref39
ref17
ref38
ref16
ref18
bishop (ref5) 2006
ref23
ji (ref12) 0
ref20
ref22
jang (ref11) 2016
ref21
ref28
ref27
ref29
ref8
ref7
xie (ref35) 0
ref9
netzer (ref26) 2011
ref4
ref3
ref6
ref40
References_xml – ident: ref32
  doi: 10.1109/LSP.2017.2697970
– start-page: 478
  year: 0
  ident: ref35
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc Int Conf Mach Learn
– ident: ref23
  doi: 10.1016/j.patcog.2018.05.019
– ident: ref7
  doi: 10.1109/LSP.2017.2672753
– ident: ref10
  doi: 10.1109/ICASSP.2019.8683497
– ident: ref14
  doi: 10.1109/TPAMI.2008.258
– ident: ref33
  doi: 10.1109/ACCESS.2018.2848210
– ident: ref6
  doi: 10.1109/TKDE.2005.198
– year: 2006
  ident: ref5
  publication-title: Pattern Recognition and Machine Learning
– ident: ref27
  doi: 10.1109/ICASSP.2019.8682823
– ident: ref39
  doi: 10.1109/LSP.2018.2843295
– ident: ref2
  doi: 10.1109/LSP.2017.2752459
– ident: ref15
  doi: 10.1109/MSP.2010.939041
– year: 0
  ident: ref19
  article-title: Stochastic gradient VB and the variational auto-encoder
  publication-title: Proc Intl Conf on Learning Representations
– ident: ref4
  doi: 10.1109/TNNLS.2017.2747861
– ident: ref16
  doi: 10.24963/ijcai.2017/273
– volume: 70
  start-page: 3861
  year: 0
  ident: ref37
  article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref20
  doi: 10.1109/CVPR.2006.68
– ident: ref21
  doi: 10.1109/5.726791
– ident: ref30
  doi: 10.1109/IJCNN.2018.8489030
– start-page: 24
  year: 0
  ident: ref12
  article-title: Deep subspace clustering networks
  publication-title: Proc Advances Neural Inform Process Syst
– ident: ref34
  doi: 10.1007/978-3-319-71246-8_49
– year: 2016
  ident: ref11
  article-title: Categorical reparameterization with gumbel-softmax
– ident: ref17
  doi: 10.1109/TASLP.2019.2917232
– ident: ref22
  doi: 10.1109/ICASSP.2019.8682546
– year: 2011
  ident: ref26
  article-title: Reading digits in natural images with unsupervised feature learning
– ident: ref40
  doi: 10.1109/TASLP.2018.2797420
– ident: ref29
  doi: 10.1109/CVPR.2009.5206537
– year: 2016
  ident: ref25
  article-title: The concrete distribution: A continuous relaxation of discrete random variables
– ident: ref1
  doi: 10.1109/LSP.2019.2913022
– ident: ref38
  doi: 10.1109/TPAMI.2019.2913863
– ident: ref8
  doi: 10.1007/978-0-387-21606-5
– ident: ref13
  doi: 10.1109/ACCESS.2019.2920592
– ident: ref31
  doi: 10.1007/978-3-642-41822-8_15
– ident: ref3
  doi: 10.1109/TSP.2019.2899294
– ident: ref28
  doi: 10.1109/TIP.2018.2848470
– ident: ref9
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2017
  ident: ref24
  article-title: Map approximation to the variational bayes Gaussian mixture model and application
  publication-title: Soft Comput
– ident: ref36
  doi: 10.1109/TNNLS.2019.2900734
– ident: ref18
  doi: 10.1109/LSP.2019.2929440
SSID ssj0008185
Score 2.5752845
Snippet An autoencoder that learns a latent space in an unsupervised manner has many applications in signal processing. However, the latent space of an autoencoder...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms Bayes methods
Clustering
Datasets
Energy management
Euclidean geometry
Gaussian distribution
Optimization
Photovoltaic cells
Probabilistic logic
Probabilistic models
Probability distribution
Random variables
Signal processing
Statistical analysis
Title Deep Clustering With Variational Autoencoder
URI https://ieeexplore.ieee.org/document/8957256
https://www.proquest.com/docview/2352214884
Volume 27
WOSCitedRecordID wos000516622400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_M4UEPfk1xOqUHL8KytUnzdRzT4UHGwK_dSpqmOBjb2Fr_fpO2KwNF8NRSklB-ad_vvZfk9wDuEkyVsTyFmFYEhQQrZN2IGBmimGWzmNJUF8Um-HgsplM5aUC3PgtjjCk2n5meuy3W8pOlzl2qrC8k5Zai92CPc16e1aqtriOecn-hj6yFFdslSV_2n18mNhDEfg9LRomru75DQUVNlR-GuGCX0fH_3usEjiov0huU034KDbM4g8MdbcEWdB-MWXnDee6UEOwT72OWfXrvNjSu0n_eIM-WTsYyMetzeBs9vg6fUFUaAWksgwzRhPlYGuH0slJ7wTzACaGBSEjIE0WUL-NYapGGwuDYOgU4taEgC1SsWMpYTC6guVguzCV4huA0UMqE1nEICU-dXI7WcUipHYGIsA39LVqRrnTDXfmKeVTED76MLL6Rwzeq8G3Dfd1jVWpm_NG25fCs21VQtqGznZCo-qk2EXbOog3fRHj1e69rOHBjlxmSDjSzdW5uYF9_ZbPN-rb4Xr4B5A-6-Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagPfovTqX3wRVi3Nh9t8jimY-IcA6furaRpioOxja3195u0XRkogk8tJWnLSXvPvTfJuQB3EaJCaZ6yPSmwTTAStnYjQlth4Wk2CymNZVZswh8M2HjMhxVolHthlFLZ4jPVNKfZXH40l6lJlbUYp76m6C3YpoQgN9-tVdpdQz35CkPH1jaWrSclHd7qvw51KIicJuIexaby-gYJZVVVfpjijF-6h_97syM4KPxIq50P_DFU1OwE9jfUBU-h8aDUwupMU6OFoK9YH5Pk03rXwXGRALTaaTI3QpaRWp7BW_dx1OnZRXEEWyLuJjaNPAdxxYxiVqwPyHdRhKnLIkz8SGDh8DDkksWEKRRqtwDFOhj0XBEKL_a8EJ9DdTafqQuwFEaxK4Qi2nUg2I-NYI6UIaFU3wEzUoPWGq1AFsrhpoDFNMgiCIcHGt_A4BsU-NbgvuyxyFUz_mh7avAs2xVQ1qC-HpCg-K1WATLuog7gGLn8vdct7PZGL_2g_zR4voI985w8X1KHarJM1TXsyK9kslreZN_ON85PvkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Clustering+With+Variational+Autoencoder&rft.jtitle=IEEE+signal+processing+letters&rft.au=Lim%2C+Kart-Leong&rft.au=Jiang%2C+Xudong&rft.au=Yi%2C+Chenyu&rft.date=2020&rft.issn=1070-9908&rft.eissn=1558-2361&rft.volume=27&rft.spage=231&rft.epage=235&rft_id=info:doi/10.1109%2FLSP.2020.2965328&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LSP_2020_2965328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon