Magnetohydrodynamic hybrid nanofluid flow with Cattaneo–Christov heat flux: thermal performance and entropy analysis
In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO 2 ) nanoparticles suspended in ethylene glycol over a radially stretchi...
Gespeichert in:
| Veröffentlicht in: | Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 8; H. 3 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.03.2025
|
| Schlagworte: | |
| ISSN: | 2520-8160, 2520-8179 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO
2
) nanoparticles suspended in ethylene glycol over a radially stretching sheet by utilizing Tiwari das model. The flow model obeying equations is untangled using a BVP4C solver with MATLAB. Moreover, a thorough analysis of tables and graphs is conducted to scrutinize the impact of different parameters on the temperature and velocity profiles. A comparison of platelet and brick nanoparticles is made, and it is seen that platelet-shaped nanoparticles exhibit superior flow motion and heat transmission properties than brick-shaped nanoparticles. Discoid-shaped particles enhance heat transfer due to their large surface area and improved dispersion within the base fluid. It has been observed that platelet-shaped nanoparticles increase by 7.50% over brick-shaped nanoparticles at a volume fraction of 4%. These findings demonstrate that the shape of nanoparticles has a profound impact on the thermal transfer and fluid flow behavior of the nanofluid. The flow of ZnO–TiO
2
/Ethylene glycol nanofluid over a radially stretching surface has significant potential for enhancing cooling mechanisms in electronic devices like computers and smartphones, as well as in heat exchanger systems. The improved heat transfer characteristics of this nanofluid offer a promising solution for more efficient thermal management in these applications. |
|---|---|
| AbstractList | In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO
2
) nanoparticles suspended in ethylene glycol over a radially stretching sheet by utilizing Tiwari das model. The flow model obeying equations is untangled using a BVP4C solver with MATLAB. Moreover, a thorough analysis of tables and graphs is conducted to scrutinize the impact of different parameters on the temperature and velocity profiles. A comparison of platelet and brick nanoparticles is made, and it is seen that platelet-shaped nanoparticles exhibit superior flow motion and heat transmission properties than brick-shaped nanoparticles. Discoid-shaped particles enhance heat transfer due to their large surface area and improved dispersion within the base fluid. It has been observed that platelet-shaped nanoparticles increase by 7.50% over brick-shaped nanoparticles at a volume fraction of 4%. These findings demonstrate that the shape of nanoparticles has a profound impact on the thermal transfer and fluid flow behavior of the nanofluid. The flow of ZnO–TiO
2
/Ethylene glycol nanofluid over a radially stretching surface has significant potential for enhancing cooling mechanisms in electronic devices like computers and smartphones, as well as in heat exchanger systems. The improved heat transfer characteristics of this nanofluid offer a promising solution for more efficient thermal management in these applications. |
| ArticleNumber | 167 |
| Author | Ragavi, M. Poornima, T. Sreenivasulu, P. |
| Author_xml | – sequence: 1 givenname: M. surname: Ragavi fullname: Ragavi, M. organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology – sequence: 2 givenname: P. surname: Sreenivasulu fullname: Sreenivasulu, P. organization: Department of Mathematics, Sri Venkateswara College of Engineering – sequence: 3 givenname: T. surname: Poornima fullname: Poornima, T. email: poornima.t@vit.ac.in organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology |
| BookMark | eNp9kEtOwzAURS1UJErpBhh5AwF_msRhhip-EogJjC3Hn8ZVale225IZe2CHrARDEQMGHb17pXfe072nYOS80wCcY3SBEaov4ww3tCkQKYtsS1ygIzAmJUEFw3Uz-tMVOgHTGJcIIVLTWc3QGGyfxMLp5LtBBa8GJ1ZWwm5og1XQCedNv8nK9H4HdzZ1cC5SEk77z_ePeRdsTH4LOy1SXtm8XcHU6bASPVzrYHxWTmoonILapeDXQ9aiH6KNZ-DYiD7q6e-cgNfbm5f5ffH4fPcwv34sJGlwKkqBW4krVlW4MlgYWbcqx1CIKC1MyTDDmBKaDUO0nbFKt8xoSVWjdVNRQyeA7O_K4GMM2vB1sCsRBo4R_y6P78vjuTz-Ux5HGWL_IGmTSNbnEML2h1G6R2P-4xY68KXfhBw6HqK-AHP4inw |
| CitedBy_id | crossref_primary_10_1016_j_jrras_2025_101747 crossref_primary_10_1002_htj_23347 crossref_primary_10_1016_j_ast_2025_110282 crossref_primary_10_1016_j_jrras_2025_101719 crossref_primary_10_1016_j_icheatmasstransfer_2025_109626 crossref_primary_10_1016_j_jrras_2025_101751 crossref_primary_10_1177_16878132251341968 crossref_primary_10_1007_s40808_025_02492_y crossref_primary_10_1016_j_jrras_2025_101573 crossref_primary_10_1016_j_jrras_2025_101842 crossref_primary_10_1007_s41939_025_00875_3 crossref_primary_10_1016_j_jrras_2025_101763 |
| Cites_doi | 10.1515/phys-2024-0036 10.1108/MMMS-11-2019-0203 10.4028/p-wwb62a 10.1007/s13204-018-0820-y 10.1016/j.aej.2023.03.025 10.18280/ijht.380213 10.1108/HFF-12-2023-0739 10.2174/157341312800620241 10.1016/j.csite.2021.101534 10.1016/j.aej.2016.08.030 10.4236/anp.2020.91002 10.1016/j.icheatmasstransfer.2021.105205 10.1007/s12648-021-02132-y 10.1142/S0217979225500560 10.1007/s12668-024-01427-8 10.1177/22808000221120329 10.1007/s10891-022-02613-9 10.1088/0256-307X/29/8/084705 10.1186/s11671-024-03975-0 10.1016/j.asej.2015.10.017 10.3390/en15218317 10.1063/5.0201939 10.1063/5.0168503 10.1063/5.0232829 10.1007/s10973-024-12948-5 10.3390/pr7110851 10.1016/j.csite.2023.102992 10.1080/17455030.2022.2030503 10.1166/jon.2022.1852 10.4028/www.scientific.net/DDF.387.78 10.14419/ijet.v7i4.10.26776 10.1016/j.ijnonlinmec.2012.06.003 10.1080/10407782.2023.2226815 10.1515/rams-2022-0320 10.1063/1.4801156 10.1007/s41939-024-00572-7 10.1177/09544089221115496 10.1007/s12648-017-1156-2 10.37934/cfdl.15.7.3141 10.1016/j.jmmm.2023.171034 10.5098/hmt.8.13 10.1016/j.icheatmasstransfer.2022.106293 10.1016/j.csite.2024.104958 10.1142/S0217979222501715 10.1615/JPorMedia.2022040637 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41939-025-00751-0 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2520-8179 |
| ExternalDocumentID | 10_1007_s41939_025_00751_0 |
| GroupedDBID | 0R~ 406 AAAVM AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABDBE ABDZT ABECU ABFTV ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD AYFIA BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABFSG ABJCF ABRTQ ACSTC AEUYN AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c291t-5a1bc1686616f1afc7bd160d02deaf581811323dea803b486eb8fec3d9ee963f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414994700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2520-8160 |
| IngestDate | Sat Nov 29 08:12:33 EST 2025 Tue Nov 18 21:08:42 EST 2025 Sat Mar 08 01:10:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Radially stretching sheet MHD Viscous dissipation Nanofluid Joule heating |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-5a1bc1686616f1afc7bd160d02deaf581811323dea803b486eb8fec3d9ee963f3 |
| ParticipantIDs | crossref_primary_10_1007_s41939_025_00751_0 crossref_citationtrail_10_1007_s41939_025_00751_0 springer_journals_10_1007_s41939_025_00751_0 |
| PublicationCentury | 2000 |
| PublicationDate | 20250300 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Multiscale and Multidisciplinary Modeling, Experiments and Design |
| PublicationTitleAbbrev | Multiscale and Multidiscip. Model. Exp. and Des |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | S Sreenadh (751_CR41) 2018; 7 NM Sarif (751_CR37) 2013; 1522 B Triveni (751_CR43) 2022; 237 F Faraz (751_CR6) 2019; 7 TS Kumar (751_CR20) 2018; 387 M Irfan (751_CR11) 2024; 104 AS Dogonchi (751_CR5) 2017; 92 JK Singh (751_CR40) 2023; 582 U Rashid (751_CR31) 2020; 09 B VinothKumar (751_CR44) 2024; 12 AS Butt (751_CR3) 2013; 30 N Bhargavi (751_CR2) 2024; 14 M Mustafa (751_CR24) 2012; 8 A Iqbal (751_CR10) 2023; 71 M Khan (751_CR18) 2022 H Waqas (751_CR47) 2022; 137 A Shahzad (751_CR39) 2017; 56 P Sreenivasulu (751_CR42) 2024 S Khattak (751_CR19) 2022 NA Zainal (751_CR49) 2021; 123 S Saranya (751_CR36) 2021; 28 M Khan (751_CR15) 2012; 47 U Khan (751_CR17) 2022; 25 K Rafique (751_CR27) 2023; 45 S Baag (751_CR1) 2017; 8 K Ramesh (751_CR30) 2024; 7 SK Saini (751_CR33) 2023; 85 RI Yahaya (751_CR48) 2022; 75 J Kayalvizhi (751_CR14) 2022; 15 S Manjunatha (751_CR21) 2022; 8 T Poornima (751_CR25) 2022; 95 M Ragavi (751_CR28) 2024; 19 B Vinothkumar (751_CR46) 2024 CM Mohana (751_CR22) 2023 W Jamshed (751_CR12) 2018; 8 K Sandhya Rani (751_CR35) 2023; 15 M Ragavi (751_CR29) 2024; 61 U Hayat (751_CR8) 2023 M Khan (751_CR16) 2022; 36 A Shahzad (751_CR38) 2012; 29 N Sandeep (751_CR34) 2017 T Muhammad (751_CR23) 2020; 17 A Davoudi (751_CR4) 2020; 38 R Revathi (751_CR32) 2024; 14 P Prashar (751_CR26) 2021; 96 B Vinothkumar (751_CR45) 2024; 149 EH Gorfie (751_CR7) 2022; 11 SM Hussain (751_CR9) 2024; 34 MI Joyce (751_CR13) 2023; 28 |
| References_xml | – year: 2024 ident: 751_CR46 publication-title: Open Phys doi: 10.1515/phys-2024-0036 – volume: 17 start-page: 35 issue: 1 year: 2020 ident: 751_CR23 publication-title: Multidiscip Model Mater Struct doi: 10.1108/MMMS-11-2019-0203 – volume: 75 start-page: 139 year: 2022 ident: 751_CR48 publication-title: J Nano Res doi: 10.4028/p-wwb62a – volume: 8 start-page: 685 year: 2018 ident: 751_CR12 publication-title: Appl Nanosci doi: 10.1007/s13204-018-0820-y – volume: 71 start-page: 13 year: 2023 ident: 751_CR10 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2023.03.025 – volume: 38 start-page: 377 year: 2020 ident: 751_CR4 publication-title: Int J Heat Technol doi: 10.18280/ijht.380213 – volume: 28 start-page: 18 year: 2023 ident: 751_CR13 publication-title: Math Comput Appl – volume: 34 start-page: 2429 issue: 6 year: 2024 ident: 751_CR9 publication-title: Int J Numer Methods Heat Fluid Flow doi: 10.1108/HFF-12-2023-0739 – volume: 8 start-page: 328 year: 2012 ident: 751_CR24 publication-title: Curr Nanosci doi: 10.2174/157341312800620241 – volume: 28 year: 2021 ident: 751_CR36 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.101534 – volume: 56 start-page: 35 year: 2017 ident: 751_CR39 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.08.030 – volume: 09 start-page: 23 year: 2020 ident: 751_CR31 publication-title: Adv Nanopart doi: 10.4236/anp.2020.91002 – volume: 123 year: 2021 ident: 751_CR49 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2021.105205 – volume: 96 start-page: 2079 year: 2021 ident: 751_CR26 publication-title: Indian J Phys doi: 10.1007/s12648-021-02132-y – year: 2024 ident: 751_CR42 publication-title: Int J Mod Phys B doi: 10.1142/S0217979225500560 – volume: 14 start-page: 2475 issue: 3 year: 2024 ident: 751_CR32 publication-title: Bionanoscience doi: 10.1007/s12668-024-01427-8 – year: 2022 ident: 751_CR18 publication-title: J Appl Biomater Funct Mater doi: 10.1177/22808000221120329 – volume: 95 start-page: 1443 issue: 6 year: 2022 ident: 751_CR25 publication-title: J Eng Phys Thermophys doi: 10.1007/s10891-022-02613-9 – volume: 29 year: 2012 ident: 751_CR38 publication-title: Chin Phys Lett doi: 10.1088/0256-307X/29/8/084705 – volume: 19 start-page: 31 issue: 1 year: 2024 ident: 751_CR28 publication-title: Discover Nano doi: 10.1186/s11671-024-03975-0 – volume: 8 start-page: 623 year: 2017 ident: 751_CR1 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2015.10.017 – volume: 30 year: 2013 ident: 751_CR3 publication-title: Chin Phys Lett – volume: 15 start-page: 8317 year: 2022 ident: 751_CR14 publication-title: Energies doi: 10.3390/en15218317 – volume: 12 start-page: 041106 year: 2024 ident: 751_CR44 publication-title: Appl Mater doi: 10.1063/5.0201939 – year: 2023 ident: 751_CR22 publication-title: Phys Fluids doi: 10.1063/5.0168503 – volume: 14 start-page: 115124 issue: 11 year: 2024 ident: 751_CR2 publication-title: AIP Adv doi: 10.1063/5.0232829 – volume: 149 start-page: 7071 year: 2024 ident: 751_CR45 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-024-12948-5 – volume: 7 start-page: 851 year: 2019 ident: 751_CR6 publication-title: Processes doi: 10.3390/pr7110851 – volume: 45 year: 2023 ident: 751_CR27 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.102992 – year: 2022 ident: 751_CR19 publication-title: Waves Random Complex Medium doi: 10.1080/17455030.2022.2030503 – volume: 11 start-page: 401 year: 2022 ident: 751_CR7 publication-title: J Nanofluids doi: 10.1166/jon.2022.1852 – volume: 387 start-page: 78 year: 2018 ident: 751_CR20 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.387.78 – volume: 7 start-page: 863 year: 2018 ident: 751_CR41 publication-title: Int J Eng Technol doi: 10.14419/ijet.v7i4.10.26776 – volume: 47 start-page: 999 year: 2012 ident: 751_CR15 publication-title: Int J Non-Linear Mech doi: 10.1016/j.ijnonlinmec.2012.06.003 – volume: 85 start-page: 2534 issue: 15 year: 2023 ident: 751_CR33 publication-title: Numer Heat Transf A Appl doi: 10.1080/10407782.2023.2226815 – year: 2023 ident: 751_CR8 publication-title: Rev Adv Mater Sci doi: 10.1515/rams-2022-0320 – volume: 1522 start-page: 420 year: 2013 ident: 751_CR37 publication-title: AIP Conf Proc doi: 10.1063/1.4801156 – volume: 7 start-page: 6151 issue: 6 year: 2024 ident: 751_CR30 publication-title: Multisc Multidiscip Model Exp des doi: 10.1007/s41939-024-00572-7 – volume: 237 start-page: 1224 year: 2022 ident: 751_CR43 publication-title: Proc Inst Mech Eng E J Process Mech Eng doi: 10.1177/09544089221115496 – volume: 92 start-page: 757 year: 2017 ident: 751_CR5 publication-title: Indian J Phys doi: 10.1007/s12648-017-1156-2 – volume: 15 start-page: 31 year: 2023 ident: 751_CR35 publication-title: CFD Lett doi: 10.37934/cfdl.15.7.3141 – volume: 582 year: 2023 ident: 751_CR40 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2023.171034 – volume: 8 start-page: 1279 issue: 4 year: 2022 ident: 751_CR21 publication-title: J Appl Comput Mech – year: 2017 ident: 751_CR34 publication-title: Front Heat Mass Transf doi: 10.5098/hmt.8.13 – volume: 137 year: 2022 ident: 751_CR47 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106293 – volume: 61 year: 2024 ident: 751_CR29 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2024.104958 – volume: 36 start-page: 2250171 issue: 25 year: 2022 ident: 751_CR16 publication-title: Int J Mod Phys B doi: 10.1142/S0217979222501715 – volume: 25 start-page: 77 year: 2022 ident: 751_CR17 publication-title: J Porous Media doi: 10.1615/JPorMedia.2022040637 – volume: 104 issue: 11 year: 2024 ident: 751_CR11 publication-title: ZAMM J Appl Math Mech/zeitschr Angew Math Mech |
| SSID | ssj0002734780 ssib042110740 |
| Score | 2.377889 |
| Snippet | In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | Characterization and Evaluation of Materials Engineering Mathematical Applications in the Physical Sciences Mechanical Engineering Numerical and Computational Physics Original Paper Simulation Solid Mechanics |
| Title | Magnetohydrodynamic hybrid nanofluid flow with Cattaneo–Christov heat flux: thermal performance and entropy analysis |
| URI | https://link.springer.com/article/10.1007/s41939-025-00751-0 |
| Volume | 8 |
| WOSCitedRecordID | wos001414994700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2520-8179 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734780 issn: 2520-8160 databaseCode: RSV dateStart: 20180301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbRMrWxOGGKioOUCGWqrfIK4tKUrVpoTf-gT_kSxi7TqESqgQ5OdLEscbLzNie9xA64okM4kRADxClnNCn3GEeZw6HJ_QkpZEh7Wtdxs0mabeTa5sU1i9vu5dHkmalniS7heBrJI6mX9V2DoLgebQA5o7o6Xhz2ypHUWhCGotg8mwBXGJDoebXIFYiXuTa7Jnfq522UNPHo8bqNFb_1941tGK9THw2HhbraE5mG2j5B_bgJhpe0YdMFvnjSMAaOualx48jncCFM5rlqjOAkurkr1jv1eI6LcCPlPnn-4cFJBhivZCDyODtFGs_8gV-2f1ORMA0E1hvHufdEZTH4Cdb6L5xfle_cCwJg8P9xCucGvUY9yICdjxSHlU8ZgI0KFxfSKpqYO81V30AL8QNWEgiyYiSPBCJlDC5VbCNKlmeyR2EozhhLKkxTlwaEiqYCKWIiPAh6IN6VRV5peJTbhHKNVFGJ51gKxudpqDT1Og0davoePJNd4zPMVP6pOyr1M7V_gzx3b-J76El33S3vqG2jypFbyAP0CIfFk_93qEZpF94yeNj |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYJODAjtjxgRtEytbE4YYQqIi2QmzqLfLKopJUNC30xj_wh3wJY9cpVEJIkJMjTRxrvMyM7XkPoT2eyCBOBPQAUcoJfcod5nHmcHhCT1IaGdK-21rcaJBmM7mwSWGd8rZ7eSRpVuphslsIvkbiaPpVbecgCB5HkyFYLH2R7_LqthxFoQlpLILJowVwiQ2Fml-BWIl4kWuzZ36udtRCjR6PGqtzOv-_9i6gOetl4qPBsFhEYzJbQrPfsAeXUa9O7zJZ5Pd9AWvogJce3_d1AhfOaJarVhdKqpW_YL1Xi49pAX6kzD_e3i0gQQ_rhRxEuq-HWPuRT_DL9lciAqaZwHrzOG_3oTwAP1lBN6cn18dVx5IwONxPvMKpUI9xLyJgxyPlUcVjJkCDwvWFpKoC9l5z1QfwQtyAhSSSjCjJA5FICZNbBatoIsszuYZwFCeMJRXGiUtDQgUToRQRET4EfVCvWkdeqfiUW4RyTZTRSofYykanKeg0NTpN3XW0P_ymPcDn-FX6oOyr1M7Vzi_iG38T30XT1et6La2dNc430Yxvul7fVttCE8VzV26jKd4rHjrPO2bAfgIqDeZH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTgW3ybgzdduu_NehO1KGoR1NLbkqdV6m7RbbU3_4P_0F_iJLutFkQQ95SF2QczSWYmyXwfQrs8ll4UC7AAUcryXcot5nBmcbh8R1IaGtK-xkVUr5NmM776VsVvTrsPtiSLmgaN0pTm1Y5Q1WHhmw9xR2xpKlbt8yAhHkcTviYN0vn6dWPQo3yT3pRoJg8lmEtk6NTcAPIm4oR2WUnz82tHvdXoVqnxQLW5___7PJoto098WHSXBTQm00U08w2TcAn1LuldKvOs1RcwtxZ89bjV14VdOKVpptpdaKl29oL1Gi4-ojnElzL7eHsvgQp6WE_wINJ9PcA6vnyET3a-ChQwTQXWi8pZpw_tAhRlGd3WTm6OTq2SnMHibuzkVkAdxp2QgH8PlUMVj5gAbQrbFZKqAOIAzWHvwQ2xPeaTUDKiJPdELCUMeuWtoEqapXIV4TCKGYsDxolNfUIFE74UIREuJIPwXrWGnIEREl4il2sCjXYyxFw2Ok1Ap4nRaWKvob3hM50Ct-NX6f2B3ZJyDD__Ir7-N_EdNHV1XEsuzurnG2jaNZbXh9g2USV_6sotNMl7-f3z07bpu5_iEu8r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic+hybrid+nanofluid+flow+with+Cattaneo%E2%80%93Christov+heat+flux%3A+thermal+performance+and+entropy+analysis&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Ragavi%2C+M.&rft.au=Sreenivasulu%2C+P.&rft.au=Poornima%2C+T.&rft.date=2025-03-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1007%2Fs41939-025-00751-0&rft.externalDocID=10_1007_s41939_025_00751_0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon |