Magnetohydrodynamic hybrid nanofluid flow with Cattaneo–Christov heat flux: thermal performance and entropy analysis

In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO 2 ) nanoparticles suspended in ethylene glycol over a radially stretchi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale and Multidisciplinary Modeling, Experiments and Design Jg. 8; H. 3
Hauptverfasser: Ragavi, M., Sreenivasulu, P., Poornima, T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.03.2025
Schlagworte:
ISSN:2520-8160, 2520-8179
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO 2 ) nanoparticles suspended in ethylene glycol over a radially stretching sheet by utilizing Tiwari das model. The flow model obeying equations is untangled using a BVP4C solver with MATLAB. Moreover, a thorough analysis of tables and graphs is conducted to scrutinize the impact of different parameters on the temperature and velocity profiles. A comparison of platelet and brick nanoparticles is made, and it is seen that platelet-shaped nanoparticles exhibit superior flow motion and heat transmission properties than brick-shaped nanoparticles. Discoid-shaped particles enhance heat transfer due to their large surface area and improved dispersion within the base fluid. It has been observed that platelet-shaped nanoparticles increase by 7.50% over brick-shaped nanoparticles at a volume fraction of 4%. These findings demonstrate that the shape of nanoparticles has a profound impact on the thermal transfer and fluid flow behavior of the nanofluid. The flow of ZnO–TiO 2 /Ethylene glycol nanofluid over a radially stretching surface has significant potential for enhancing cooling mechanisms in electronic devices like computers and smartphones, as well as in heat exchanger systems. The improved heat transfer characteristics of this nanofluid offer a promising solution for more efficient thermal management in these applications.
AbstractList In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and thermal behavior of nanofluid containing brick and platelet shape (ZnO–TiO 2 ) nanoparticles suspended in ethylene glycol over a radially stretching sheet by utilizing Tiwari das model. The flow model obeying equations is untangled using a BVP4C solver with MATLAB. Moreover, a thorough analysis of tables and graphs is conducted to scrutinize the impact of different parameters on the temperature and velocity profiles. A comparison of platelet and brick nanoparticles is made, and it is seen that platelet-shaped nanoparticles exhibit superior flow motion and heat transmission properties than brick-shaped nanoparticles. Discoid-shaped particles enhance heat transfer due to their large surface area and improved dispersion within the base fluid. It has been observed that platelet-shaped nanoparticles increase by 7.50% over brick-shaped nanoparticles at a volume fraction of 4%. These findings demonstrate that the shape of nanoparticles has a profound impact on the thermal transfer and fluid flow behavior of the nanofluid. The flow of ZnO–TiO 2 /Ethylene glycol nanofluid over a radially stretching surface has significant potential for enhancing cooling mechanisms in electronic devices like computers and smartphones, as well as in heat exchanger systems. The improved heat transfer characteristics of this nanofluid offer a promising solution for more efficient thermal management in these applications.
ArticleNumber 167
Author Ragavi, M.
Poornima, T.
Sreenivasulu, P.
Author_xml – sequence: 1
  givenname: M.
  surname: Ragavi
  fullname: Ragavi, M.
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
– sequence: 2
  givenname: P.
  surname: Sreenivasulu
  fullname: Sreenivasulu, P.
  organization: Department of Mathematics, Sri Venkateswara College of Engineering
– sequence: 3
  givenname: T.
  surname: Poornima
  fullname: Poornima, T.
  email: poornima.t@vit.ac.in
  organization: Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
BookMark eNp9kEtOwzAURS1UJErpBhh5AwF_msRhhip-EogJjC3Hn8ZVale225IZe2CHrARDEQMGHb17pXfe072nYOS80wCcY3SBEaov4ww3tCkQKYtsS1ygIzAmJUEFw3Uz-tMVOgHTGJcIIVLTWc3QGGyfxMLp5LtBBa8GJ1ZWwm5og1XQCedNv8nK9H4HdzZ1cC5SEk77z_ePeRdsTH4LOy1SXtm8XcHU6bASPVzrYHxWTmoonILapeDXQ9aiH6KNZ-DYiD7q6e-cgNfbm5f5ffH4fPcwv34sJGlwKkqBW4krVlW4MlgYWbcqx1CIKC1MyTDDmBKaDUO0nbFKt8xoSVWjdVNRQyeA7O_K4GMM2vB1sCsRBo4R_y6P78vjuTz-Ux5HGWL_IGmTSNbnEML2h1G6R2P-4xY68KXfhBw6HqK-AHP4inw
CitedBy_id crossref_primary_10_1016_j_jrras_2025_101747
crossref_primary_10_1002_htj_23347
crossref_primary_10_1016_j_ast_2025_110282
crossref_primary_10_1016_j_jrras_2025_101719
crossref_primary_10_1016_j_icheatmasstransfer_2025_109626
crossref_primary_10_1016_j_jrras_2025_101751
crossref_primary_10_1177_16878132251341968
crossref_primary_10_1007_s40808_025_02492_y
crossref_primary_10_1016_j_jrras_2025_101573
crossref_primary_10_1016_j_jrras_2025_101842
crossref_primary_10_1007_s41939_025_00875_3
crossref_primary_10_1016_j_jrras_2025_101763
Cites_doi 10.1515/phys-2024-0036
10.1108/MMMS-11-2019-0203
10.4028/p-wwb62a
10.1007/s13204-018-0820-y
10.1016/j.aej.2023.03.025
10.18280/ijht.380213
10.1108/HFF-12-2023-0739
10.2174/157341312800620241
10.1016/j.csite.2021.101534
10.1016/j.aej.2016.08.030
10.4236/anp.2020.91002
10.1016/j.icheatmasstransfer.2021.105205
10.1007/s12648-021-02132-y
10.1142/S0217979225500560
10.1007/s12668-024-01427-8
10.1177/22808000221120329
10.1007/s10891-022-02613-9
10.1088/0256-307X/29/8/084705
10.1186/s11671-024-03975-0
10.1016/j.asej.2015.10.017
10.3390/en15218317
10.1063/5.0201939
10.1063/5.0168503
10.1063/5.0232829
10.1007/s10973-024-12948-5
10.3390/pr7110851
10.1016/j.csite.2023.102992
10.1080/17455030.2022.2030503
10.1166/jon.2022.1852
10.4028/www.scientific.net/DDF.387.78
10.14419/ijet.v7i4.10.26776
10.1016/j.ijnonlinmec.2012.06.003
10.1080/10407782.2023.2226815
10.1515/rams-2022-0320
10.1063/1.4801156
10.1007/s41939-024-00572-7
10.1177/09544089221115496
10.1007/s12648-017-1156-2
10.37934/cfdl.15.7.3141
10.1016/j.jmmm.2023.171034
10.5098/hmt.8.13
10.1016/j.icheatmasstransfer.2022.106293
10.1016/j.csite.2024.104958
10.1142/S0217979222501715
10.1615/JPorMedia.2022040637
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41939-025-00751-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2520-8179
ExternalDocumentID 10_1007_s41939_025_00751_0
GroupedDBID 0R~
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDBE
ABDZT
ABECU
ABFTV
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
AEFQL
AEJRE
AEMSY
AESKC
AFBBN
AFQWF
AGDGC
AGJBK
AGMZJ
AGQEE
AGRTI
AIAKS
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
AYFIA
BGNMA
CSCUP
DPUIP
EBLON
EBS
EJD
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
H13
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-5a1bc1686616f1afc7bd160d02deaf581811323dea803b486eb8fec3d9ee963f3
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001414994700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2520-8160
IngestDate Sat Nov 29 08:12:33 EST 2025
Tue Nov 18 21:08:42 EST 2025
Sat Mar 08 01:10:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Radially stretching sheet
MHD
Viscous dissipation
Nanofluid
Joule heating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5a1bc1686616f1afc7bd160d02deaf581811323dea803b486eb8fec3d9ee963f3
ParticipantIDs crossref_primary_10_1007_s41939_025_00751_0
crossref_citationtrail_10_1007_s41939_025_00751_0
springer_journals_10_1007_s41939_025_00751_0
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Multiscale and Multidisciplinary Modeling, Experiments and Design
PublicationTitleAbbrev Multiscale and Multidiscip. Model. Exp. and Des
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References S Sreenadh (751_CR41) 2018; 7
NM Sarif (751_CR37) 2013; 1522
B Triveni (751_CR43) 2022; 237
F Faraz (751_CR6) 2019; 7
TS Kumar (751_CR20) 2018; 387
M Irfan (751_CR11) 2024; 104
AS Dogonchi (751_CR5) 2017; 92
JK Singh (751_CR40) 2023; 582
U Rashid (751_CR31) 2020; 09
B VinothKumar (751_CR44) 2024; 12
AS Butt (751_CR3) 2013; 30
N Bhargavi (751_CR2) 2024; 14
M Mustafa (751_CR24) 2012; 8
A Iqbal (751_CR10) 2023; 71
M Khan (751_CR18) 2022
H Waqas (751_CR47) 2022; 137
A Shahzad (751_CR39) 2017; 56
P Sreenivasulu (751_CR42) 2024
S Khattak (751_CR19) 2022
NA Zainal (751_CR49) 2021; 123
S Saranya (751_CR36) 2021; 28
M Khan (751_CR15) 2012; 47
U Khan (751_CR17) 2022; 25
K Rafique (751_CR27) 2023; 45
S Baag (751_CR1) 2017; 8
K Ramesh (751_CR30) 2024; 7
SK Saini (751_CR33) 2023; 85
RI Yahaya (751_CR48) 2022; 75
J Kayalvizhi (751_CR14) 2022; 15
S Manjunatha (751_CR21) 2022; 8
T Poornima (751_CR25) 2022; 95
M Ragavi (751_CR28) 2024; 19
B Vinothkumar (751_CR46) 2024
CM Mohana (751_CR22) 2023
W Jamshed (751_CR12) 2018; 8
K Sandhya Rani (751_CR35) 2023; 15
M Ragavi (751_CR29) 2024; 61
U Hayat (751_CR8) 2023
M Khan (751_CR16) 2022; 36
A Shahzad (751_CR38) 2012; 29
N Sandeep (751_CR34) 2017
T Muhammad (751_CR23) 2020; 17
A Davoudi (751_CR4) 2020; 38
R Revathi (751_CR32) 2024; 14
P Prashar (751_CR26) 2021; 96
B Vinothkumar (751_CR45) 2024; 149
EH Gorfie (751_CR7) 2022; 11
SM Hussain (751_CR9) 2024; 34
MI Joyce (751_CR13) 2023; 28
References_xml – year: 2024
  ident: 751_CR46
  publication-title: Open Phys
  doi: 10.1515/phys-2024-0036
– volume: 17
  start-page: 35
  issue: 1
  year: 2020
  ident: 751_CR23
  publication-title: Multidiscip Model Mater Struct
  doi: 10.1108/MMMS-11-2019-0203
– volume: 75
  start-page: 139
  year: 2022
  ident: 751_CR48
  publication-title: J Nano Res
  doi: 10.4028/p-wwb62a
– volume: 8
  start-page: 685
  year: 2018
  ident: 751_CR12
  publication-title: Appl Nanosci
  doi: 10.1007/s13204-018-0820-y
– volume: 71
  start-page: 13
  year: 2023
  ident: 751_CR10
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2023.03.025
– volume: 38
  start-page: 377
  year: 2020
  ident: 751_CR4
  publication-title: Int J Heat Technol
  doi: 10.18280/ijht.380213
– volume: 28
  start-page: 18
  year: 2023
  ident: 751_CR13
  publication-title: Math Comput Appl
– volume: 34
  start-page: 2429
  issue: 6
  year: 2024
  ident: 751_CR9
  publication-title: Int J Numer Methods Heat Fluid Flow
  doi: 10.1108/HFF-12-2023-0739
– volume: 8
  start-page: 328
  year: 2012
  ident: 751_CR24
  publication-title: Curr Nanosci
  doi: 10.2174/157341312800620241
– volume: 28
  year: 2021
  ident: 751_CR36
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.101534
– volume: 56
  start-page: 35
  year: 2017
  ident: 751_CR39
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.08.030
– volume: 09
  start-page: 23
  year: 2020
  ident: 751_CR31
  publication-title: Adv Nanopart
  doi: 10.4236/anp.2020.91002
– volume: 123
  year: 2021
  ident: 751_CR49
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2021.105205
– volume: 96
  start-page: 2079
  year: 2021
  ident: 751_CR26
  publication-title: Indian J Phys
  doi: 10.1007/s12648-021-02132-y
– year: 2024
  ident: 751_CR42
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979225500560
– volume: 14
  start-page: 2475
  issue: 3
  year: 2024
  ident: 751_CR32
  publication-title: Bionanoscience
  doi: 10.1007/s12668-024-01427-8
– year: 2022
  ident: 751_CR18
  publication-title: J Appl Biomater Funct Mater
  doi: 10.1177/22808000221120329
– volume: 95
  start-page: 1443
  issue: 6
  year: 2022
  ident: 751_CR25
  publication-title: J Eng Phys Thermophys
  doi: 10.1007/s10891-022-02613-9
– volume: 29
  year: 2012
  ident: 751_CR38
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/29/8/084705
– volume: 19
  start-page: 31
  issue: 1
  year: 2024
  ident: 751_CR28
  publication-title: Discover Nano
  doi: 10.1186/s11671-024-03975-0
– volume: 8
  start-page: 623
  year: 2017
  ident: 751_CR1
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2015.10.017
– volume: 30
  year: 2013
  ident: 751_CR3
  publication-title: Chin Phys Lett
– volume: 15
  start-page: 8317
  year: 2022
  ident: 751_CR14
  publication-title: Energies
  doi: 10.3390/en15218317
– volume: 12
  start-page: 041106
  year: 2024
  ident: 751_CR44
  publication-title: Appl Mater
  doi: 10.1063/5.0201939
– year: 2023
  ident: 751_CR22
  publication-title: Phys Fluids
  doi: 10.1063/5.0168503
– volume: 14
  start-page: 115124
  issue: 11
  year: 2024
  ident: 751_CR2
  publication-title: AIP Adv
  doi: 10.1063/5.0232829
– volume: 149
  start-page: 7071
  year: 2024
  ident: 751_CR45
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-024-12948-5
– volume: 7
  start-page: 851
  year: 2019
  ident: 751_CR6
  publication-title: Processes
  doi: 10.3390/pr7110851
– volume: 45
  year: 2023
  ident: 751_CR27
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.102992
– year: 2022
  ident: 751_CR19
  publication-title: Waves Random Complex Medium
  doi: 10.1080/17455030.2022.2030503
– volume: 11
  start-page: 401
  year: 2022
  ident: 751_CR7
  publication-title: J Nanofluids
  doi: 10.1166/jon.2022.1852
– volume: 387
  start-page: 78
  year: 2018
  ident: 751_CR20
  publication-title: Defect Diffus Forum
  doi: 10.4028/www.scientific.net/DDF.387.78
– volume: 7
  start-page: 863
  year: 2018
  ident: 751_CR41
  publication-title: Int J Eng Technol
  doi: 10.14419/ijet.v7i4.10.26776
– volume: 47
  start-page: 999
  year: 2012
  ident: 751_CR15
  publication-title: Int J Non-Linear Mech
  doi: 10.1016/j.ijnonlinmec.2012.06.003
– volume: 85
  start-page: 2534
  issue: 15
  year: 2023
  ident: 751_CR33
  publication-title: Numer Heat Transf A Appl
  doi: 10.1080/10407782.2023.2226815
– year: 2023
  ident: 751_CR8
  publication-title: Rev Adv Mater Sci
  doi: 10.1515/rams-2022-0320
– volume: 1522
  start-page: 420
  year: 2013
  ident: 751_CR37
  publication-title: AIP Conf Proc
  doi: 10.1063/1.4801156
– volume: 7
  start-page: 6151
  issue: 6
  year: 2024
  ident: 751_CR30
  publication-title: Multisc Multidiscip Model Exp des
  doi: 10.1007/s41939-024-00572-7
– volume: 237
  start-page: 1224
  year: 2022
  ident: 751_CR43
  publication-title: Proc Inst Mech Eng E J Process Mech Eng
  doi: 10.1177/09544089221115496
– volume: 92
  start-page: 757
  year: 2017
  ident: 751_CR5
  publication-title: Indian J Phys
  doi: 10.1007/s12648-017-1156-2
– volume: 15
  start-page: 31
  year: 2023
  ident: 751_CR35
  publication-title: CFD Lett
  doi: 10.37934/cfdl.15.7.3141
– volume: 582
  year: 2023
  ident: 751_CR40
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2023.171034
– volume: 8
  start-page: 1279
  issue: 4
  year: 2022
  ident: 751_CR21
  publication-title: J Appl Comput Mech
– year: 2017
  ident: 751_CR34
  publication-title: Front Heat Mass Transf
  doi: 10.5098/hmt.8.13
– volume: 137
  year: 2022
  ident: 751_CR47
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106293
– volume: 61
  year: 2024
  ident: 751_CR29
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2024.104958
– volume: 36
  start-page: 2250171
  issue: 25
  year: 2022
  ident: 751_CR16
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979222501715
– volume: 25
  start-page: 77
  year: 2022
  ident: 751_CR17
  publication-title: J Porous Media
  doi: 10.1615/JPorMedia.2022040637
– volume: 104
  issue: 11
  year: 2024
  ident: 751_CR11
  publication-title: ZAMM J Appl Math Mech/zeitschr Angew Math Mech
SSID ssj0002734780
ssib042110740
Score 2.377889
Snippet In the study, the Cattaneo–Christov heat flux model acts as a cooling mechanism by regulating the energy boundary layer. This study analyzes the flow and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Characterization and Evaluation of Materials
Engineering
Mathematical Applications in the Physical Sciences
Mechanical Engineering
Numerical and Computational Physics
Original Paper
Simulation
Solid Mechanics
Title Magnetohydrodynamic hybrid nanofluid flow with Cattaneo–Christov heat flux: thermal performance and entropy analysis
URI https://link.springer.com/article/10.1007/s41939-025-00751-0
Volume 8
WOSCitedRecordID wos001414994700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2520-8179
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002734780
  issn: 2520-8160
  databaseCode: RSV
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6Js8oEbRMrWxOGGKioOUCGWqrfIK4tKUrVpoTf-gT_kSxi7TqESqgQ5OdLEscbLzNie9xA64okM4kRADxClnNCn3GEeZw6HJ_QkpZEh7Wtdxs0mabeTa5sU1i9vu5dHkmalniS7heBrJI6mX9V2DoLgebQA5o7o6Xhz2ypHUWhCGotg8mwBXGJDoebXIFYiXuTa7Jnfq522UNPHo8bqNFb_1941tGK9THw2HhbraE5mG2j5B_bgJhpe0YdMFvnjSMAaOualx48jncCFM5rlqjOAkurkr1jv1eI6LcCPlPnn-4cFJBhivZCDyODtFGs_8gV-2f1ORMA0E1hvHufdEZTH4Cdb6L5xfle_cCwJg8P9xCucGvUY9yICdjxSHlU8ZgI0KFxfSKpqYO81V30AL8QNWEgiyYiSPBCJlDC5VbCNKlmeyR2EozhhLKkxTlwaEiqYCKWIiPAh6IN6VRV5peJTbhHKNVFGJ51gKxudpqDT1Og0davoePJNd4zPMVP6pOyr1M7V_gzx3b-J76El33S3vqG2jypFbyAP0CIfFk_93qEZpF94yeNj
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELXYJODAjtjxgRtEytbE4YYQqIi2QmzqLfLKopJUNC30xj_wh3wJY9cpVEJIkJMjTRxrvMyM7XkPoT2eyCBOBPQAUcoJfcod5nHmcHhCT1IaGdK-21rcaJBmM7mwSWGd8rZ7eSRpVuphslsIvkbiaPpVbecgCB5HkyFYLH2R7_LqthxFoQlpLILJowVwiQ2Fml-BWIl4kWuzZ36udtRCjR6PGqtzOv-_9i6gOetl4qPBsFhEYzJbQrPfsAeXUa9O7zJZ5Pd9AWvogJce3_d1AhfOaJarVhdKqpW_YL1Xi49pAX6kzD_e3i0gQQ_rhRxEuq-HWPuRT_DL9lciAqaZwHrzOG_3oTwAP1lBN6cn18dVx5IwONxPvMKpUI9xLyJgxyPlUcVjJkCDwvWFpKoC9l5z1QfwQtyAhSSSjCjJA5FICZNbBatoIsszuYZwFCeMJRXGiUtDQgUToRQRET4EfVCvWkdeqfiUW4RyTZTRSofYykanKeg0NTpN3XW0P_ymPcDn-FX6oOyr1M7Vzi_iG38T30XT1et6La2dNc430Yxvul7fVttCE8VzV26jKd4rHjrPO2bAfgIqDeZH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTgW3ybgzdduu_NehO1KGoR1NLbkqdV6m7RbbU3_4P_0F_iJLutFkQQ95SF2QczSWYmyXwfQrs8ll4UC7AAUcryXcot5nBmcbh8R1IaGtK-xkVUr5NmM776VsVvTrsPtiSLmgaN0pTm1Y5Q1WHhmw9xR2xpKlbt8yAhHkcTviYN0vn6dWPQo3yT3pRoJg8lmEtk6NTcAPIm4oR2WUnz82tHvdXoVqnxQLW5___7PJoto098WHSXBTQm00U08w2TcAn1LuldKvOs1RcwtxZ89bjV14VdOKVpptpdaKl29oL1Gi4-ojnElzL7eHsvgQp6WE_wINJ9PcA6vnyET3a-ChQwTQXWi8pZpw_tAhRlGd3WTm6OTq2SnMHibuzkVkAdxp2QgH8PlUMVj5gAbQrbFZKqAOIAzWHvwQ2xPeaTUDKiJPdELCUMeuWtoEqapXIV4TCKGYsDxolNfUIFE74UIREuJIPwXrWGnIEREl4il2sCjXYyxFw2Ok1Ap4nRaWKvob3hM50Ct-NX6f2B3ZJyDD__Ir7-N_EdNHV1XEsuzurnG2jaNZbXh9g2USV_6sotNMl7-f3z07bpu5_iEu8r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamic+hybrid+nanofluid+flow+with+Cattaneo%E2%80%93Christov+heat+flux%3A+thermal+performance+and+entropy+analysis&rft.jtitle=Multiscale+and+Multidisciplinary+Modeling%2C+Experiments+and+Design&rft.au=Ragavi%2C+M.&rft.au=Sreenivasulu%2C+P.&rft.au=Poornima%2C+T.&rft.date=2025-03-01&rft.pub=Springer+International+Publishing&rft.issn=2520-8160&rft.eissn=2520-8179&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1007%2Fs41939-025-00751-0&rft.externalDocID=10_1007_s41939_025_00751_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2520-8160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2520-8160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2520-8160&client=summon