GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning With End-to-End Learning

We present GLAS: G lobal-to- L ocal A utonomy S ynthesis, a provably-safe, automated distributed policy generation for multi-robot motion planning. Our approach combines the advantage of centralized planning of avoiding local minima with the advantage of decentralized controllers of scalability and...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 5; no. 3; pp. 4249 - 4256
Main Authors: Riviere, Benjamin, Honig, Wolfgang, Yue, Yisong, Chung, Soon-Jo
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present GLAS: G lobal-to- L ocal A utonomy S ynthesis, a provably-safe, automated distributed policy generation for multi-robot motion planning. Our approach combines the advantage of centralized planning of avoiding local minima with the advantage of decentralized controllers of scalability and distributed computation. In particular, our synthesized policies only require relative state information of nearby neighbors and obstacles, and compute a provably-safe action. Our approach has three major components: i) we generate demonstration trajectories using a global planner and extract local observations from them, ii) we use deep imitation learning to learn a decentralized policy that can run efficiently online, and iii) we introduce a novel differentiable safety module to ensure collision-free operation, thereby allowing for end-to-end policy training. Our numerical experiments demonstrate that our policies have a 20% higher success rate than optimal reciprocal collision avoidance, ORCA, across a wide range of robot and obstacle densities. We demonstrate our method on an aerial swarm, executing the policy on low-end microcontrollers in real-time.
AbstractList We present GLAS: G lobal-to- L ocal A utonomy S ynthesis, a provably-safe, automated distributed policy generation for multi-robot motion planning. Our approach combines the advantage of centralized planning of avoiding local minima with the advantage of decentralized controllers of scalability and distributed computation. In particular, our synthesized policies only require relative state information of nearby neighbors and obstacles, and compute a provably-safe action. Our approach has three major components: i) we generate demonstration trajectories using a global planner and extract local observations from them, ii) we use deep imitation learning to learn a decentralized policy that can run efficiently online, and iii) we introduce a novel differentiable safety module to ensure collision-free operation, thereby allowing for end-to-end policy training. Our numerical experiments demonstrate that our policies have a 20% higher success rate than optimal reciprocal collision avoidance, ORCA, across a wide range of robot and obstacle densities. We demonstrate our method on an aerial swarm, executing the policy on low-end microcontrollers in real-time.
Author Honig, Wolfgang
Yue, Yisong
Riviere, Benjamin
Chung, Soon-Jo
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0000-0003-4189-4090
  surname: Riviere
  fullname: Riviere, Benjamin
  email: briviere@caltech.edu
  organization: California Institute of Technology, Pasadena, CA, USA
– sequence: 2
  givenname: Wolfgang
  orcidid: 0000-0002-0773-028X
  surname: Honig
  fullname: Honig, Wolfgang
  email: whoenig@caltech.edu
  organization: California Institute of Technology, Pasadena, CA, USA
– sequence: 3
  givenname: Yisong
  surname: Yue
  fullname: Yue, Yisong
  email: yyue@caltech.edu
  organization: California Institute of Technology, Pasadena, CA, USA
– sequence: 4
  givenname: Soon-Jo
  orcidid: 0000-0002-6657-3907
  surname: Chung
  fullname: Chung, Soon-Jo
  email: sjchung@caltech.edu
  organization: California Institute of Technology, Pasadena, CA, USA
BookMark eNp9UEFLwzAYDaLgnLsLXgKeO78kTbt4G2NOoUPZBh5L2iYuo0tmmh72723ZEPHg6X3wvfe-970bdGmdVQjdERgTAuIxW03HFCiMqRAxMH6BBpSlacTSJLn8NV-jUdPsAIBwmjLBB0gvsun6CS9qV8g6Ci7KXClrvJZa4WkbnHX7I14fbdiqxjRYO4-XbR1MtHKFC3jpgnEWv9fSWmM_8YcJWzy3Ve_UAc6U9P3iFl1pWTdqdMYh2jzPN7OXKHtbvM6mWVRSQULEBWG6kqzU8YTwgseiggJiJipZVMWk0jzRHCaSyrSABHgiKAgCpWKMxBVjQ_Rwsj1499WqJuQ713rbXcxpDCmwRBDSsZITq_SuabzSeWmC7B8JXpo6J5D3reZdq3nfan5utRPCH-HBm730x_8k9yeJUUr90EWXukvMvgENX4Jg
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_arcontrol_2021_10_001
crossref_primary_10_1109_TRO_2024_3509015
crossref_primary_10_2514_1_G007671
crossref_primary_10_1109_TNNLS_2023_3303502
crossref_primary_10_1007_s40031_024_01097_w
crossref_primary_10_1007_s10846_021_01378_2
crossref_primary_10_1007_s11432_022_3666_2
crossref_primary_10_1007_s10514_023_10104_w
crossref_primary_10_1016_j_paerosci_2021_100696
crossref_primary_10_1109_TCST_2022_3172872
crossref_primary_10_1109_TRO_2022_3181055
crossref_primary_10_1109_TRO_2023_3297010
crossref_primary_10_1109_LRA_2021_3096758
crossref_primary_10_3390_electronics12183946
crossref_primary_10_1109_TITS_2021_3097297
crossref_primary_10_3389_fnbot_2024_1464572
crossref_primary_10_1109_LRA_2020_3026638
crossref_primary_10_1109_ACCESS_2024_3392305
crossref_primary_10_1007_s10462_024_10739_w
crossref_primary_10_7717_peerj_cs_1056
crossref_primary_10_3390_app11199055
crossref_primary_10_1109_ACCESS_2024_3416111
crossref_primary_10_1126_scirobotics_ado1010
crossref_primary_10_1134_S1064562422060229
crossref_primary_10_1109_TRO_2023_3344034
crossref_primary_10_1109_LRA_2024_3426374
crossref_primary_10_3390_s23042036
crossref_primary_10_1109_TRO_2021_3098436
crossref_primary_10_1109_ACCESS_2024_3402564
crossref_primary_10_1109_LRA_2021_3091019
crossref_primary_10_1109_TNSM_2024_3406350
crossref_primary_10_1038_s41467_021_27015_y
crossref_primary_10_1051_itmconf_20257801015
crossref_primary_10_1109_TNNLS_2022_3172168
crossref_primary_10_1109_LRA_2023_3337700
crossref_primary_10_1109_LRA_2021_3061073
crossref_primary_10_3390_app14103960
crossref_primary_10_1109_TCE_2023_3340327
crossref_primary_10_1109_TIV_2024_3422172
crossref_primary_10_1108_RIA_01_2024_0011
crossref_primary_10_1109_LRA_2021_3139145
crossref_primary_10_1016_j_knosys_2023_111121
crossref_primary_10_1109_ACCESS_2021_3129474
Cites_doi 10.1109/ICRA.2017.7989376
10.15607/RSS.2018.XIV.056
10.1109/TRO.2017.2659727
10.1007/978-3-642-19457-3_1
10.1109/LRA.2019.2903261
10.1109/70.163777
10.1109/IROS40897.2019.8968483
10.1109/LRA.2018.2890572
10.15607/RSS.2005.I.007
10.15607/RSS.2018.XIV.001
10.1109/TRO.2017.2705044
10.1177/0278364916632065
10.1109/TNN.2008.2005605
10.1109/TRO.2018.2853613
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2994035
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 4256
ExternalDocumentID 10_1109_LRA_2020_2994035
9091314
Genre orig-research
GrantInformation_xml – fundername: Raytheon Company and Caltech/NASA Jet Propulsion Laboratory
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5913fda3cf4815b549d0b0439dabdb8df56f508a2a7b06056920910ce3314d33
IEDL.DBID RIE
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541736400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 30 04:55:30 EST 2025
Sat Nov 29 06:03:07 EST 2025
Tue Nov 18 22:23:56 EST 2025
Wed Aug 27 02:37:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5913fda3cf4815b549d0b0439dabdb8df56f508a2a7b06056920910ce3314d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6657-3907
0000-0003-4189-4090
0000-0002-0773-028X
PQID 2407036911
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2407036911
crossref_citationtrail_10_1109_LRA_2020_2994035
ieee_primary_9091314
crossref_primary_10_1109_LRA_2020_2994035
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
li (ref13) 2019
ref11
ref10
ross (ref24) 0; 15
berg (ref1) 0; 70
ref2
zaheer (ref17) 0
ref19
khalil (ref21) 2002
shi (ref18) 0
cheng (ref7) 0; 97
khatib (ref3) 1990
ref23
paszke (ref22) 0
ref25
boyd (ref20) 2014
raju (ref16) 2019
ref8
ref9
ref4
ref6
ref5
khan (ref14) 2019
References_xml – year: 2002
  ident: ref21
  publication-title: Nonlinear Systems
– ident: ref23
  doi: 10.1109/ICRA.2017.7989376
– ident: ref19
  doi: 10.15607/RSS.2018.XIV.056
– ident: ref6
  doi: 10.1109/TRO.2017.2659727
– volume: 15
  start-page: 627
  year: 0
  ident: ref24
  article-title: A reduction of imitation learning and structured prediction to no-regret online learning
  publication-title: Proc Int Conf Artif Intell Statist
– volume: 70
  start-page: 3
  year: 0
  ident: ref1
  article-title: Reciprocal n-body collision avoidance
  publication-title: Proc Int Symp Robot Res
  doi: 10.1007/978-3-642-19457-3_1
– ident: ref12
  doi: 10.1109/LRA.2019.2903261
– year: 0
  ident: ref18
  article-title: Neural-swarm: Decentralized close-proximity multirotor control using learned interactions
  publication-title: Proc IEEE Int Conf Robot Autom
– start-page: 396
  year: 1990
  ident: ref3
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
  publication-title: Autonomous Robot Vehicles
– ident: ref4
  doi: 10.1109/70.163777
– year: 2019
  ident: ref13
  article-title: Graph neural networks for decentralized multi-robot path planning
– ident: ref15
  doi: 10.1109/IROS40897.2019.8968483
– ident: ref11
  doi: 10.1109/LRA.2018.2890572
– start-page: 8024
  year: 0
  ident: ref22
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2014
  ident: ref20
  publication-title: Convex optimization
– ident: ref5
  doi: 10.15607/RSS.2005.I.007
– ident: ref8
  doi: 10.15607/RSS.2018.XIV.001
– start-page: 3391
  year: 0
  ident: ref17
  article-title: Deep sets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref16
  article-title: Decentralized runtime synthesis of shields for multi-agent systems
– ident: ref2
  doi: 10.1109/TRO.2017.2705044
– ident: ref9
  doi: 10.1177/0278364916632065
– ident: ref25
  doi: 10.1109/TNN.2008.2005605
– ident: ref10
  doi: 10.1109/TRO.2018.2853613
– year: 2019
  ident: ref14
  article-title: Graph policy gradients for large scale unlabeled motion planning with constraints
– volume: 97
  start-page: 1141
  year: 0
  ident: ref7
  article-title: Control regularization for reduced variance reinforcement learning
  publication-title: Proc Int Conf Mach Learn
SSID ssj0001527395
Score 2.488578
Snippet We present GLAS: G lobal-to- L ocal A utonomy S ynthesis, a provably-safe, automated distributed policy generation for multi-robot motion planning. Our...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4249
SubjectTerms Collision avoidance
Distributed robot systems
imitation learning
Learning
Measurement
Microcontrollers
Motion planning
Multiple robots
Optimal control
path planning for multiple mobile robots or agents
Planning
Policies
Robot dynamics
Robots
Safety
State (computer science)
Trajectory
Title GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning With End-to-End Learning
URI https://ieeexplore.ieee.org/document/9091314
https://www.proquest.com/docview/2407036911
Volume 5
WOSCitedRecordID wos000541736400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5M8aAHf01xOiUHL4LZ6tourbchUw9TxA3crTS_dCCtuE7w4t_ue2k3BUXw1B6SkOZr8t5L8r4P4FiYiO6H4_wW1udBN1RcBtbwwBdaBMq3oXKJwgNxexuNx_FdDU4XuTDGGHf5zLTo1Z3l61zNaKusHROJJalWLwkhylytr_0UYhKLw_lJpBe3B_c9jP86XgtX3MBzem5flsdJqfxYf51Rudz4X3c2Yb1yHlmvRHsLaibbhrVvlIJ1sFeD3vCclVT-vMj5gIwVG6bWsN6scCkMbPieod83nUwZuqzM5eDy-1zmBbtxoj5sLmXEHibFE-tnmlrCB6voWB93YHTZH11c80pLgatOfFbwELtqdeorS-wsEqNC7UlKi9Wp1DLSNuxa9NXSTiqkhyFON-6QJ6GMj1-ofX8XlrM8M3vAZCCUH0VUFWPrKEhJ4w_9Dhlg4dSYBrTnw5yoimec5C6eExdveHGCwCQETFIB04CTRY2XkmPjj7J1AmJRrsKgAc05kkk1CacJBatooHE53_-91gGsUtvl7dsmLBevM3MIK-qtmExfj2Dp5qN_5P6yT0QIzeA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5CMGnsANsKWgcMH3aZNNOQOE3CrULtipZWU1tpvUXxL6iEEkRTpP33vOek7aShSZySg53Y-WK_92y_7wP4GpmYzofj-I5swEU3VFwKa7gIIh0JFdhQuUThNBqP4_k8-bUD3ze5MMYYd_jMXNCt28vXpVrRUlknIRJLUq3eC4XwL-tsre2KCnGJJeF6L9JLOumkhxGg713gnCs8p-i2tT1OTOWfGdiZlcHh6xr0Hg4a95H1arw_wI4pPsK7v0gFW2B_pL3pFavJ_HlV8pTMFZvm1rDeqnJJDGz6p0DPb7lYMnRamcvC5ZNSlhUbOVkfthYzYr8X1R3rF5qehBfWELLeHsFs0J9dD3mjpsCVn1xWPMSmWp0HyhI_i8S4UHuSEmN1LrWMtQ27Fr213M8j6WGQ00188iWUCbCHOgiOYbcoC_MJmBSRCuKYqmJ0HYucVP7Q85ACC-fGtKGz_syZapjGSfDiPnMRh5dkCExGwGQNMG34tqnxULNs_Kdsi4DYlGswaMPpGsmsGYbLjMJVNNE4oX9-udY5vB3ORmmW3ox_nsA-vac-i3sKu9XjypzBG_VULZaPX9y_9gxDTs_2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GLAS%3A+Global-to-Local+Safe+Autonomy+Synthesis+for+Multi-Robot+Motion+Planning+With+End-to-End+Learning&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Riviere%2C+Benjamin&rft.au=Honig%2C+Wolfgang&rft.au=Yue%2C+Yisong&rft.au=Chung%2C+Soon-Jo&rft.date=2020-07-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=5&rft.issue=3&rft.spage=4249&rft.epage=4256&rft_id=info:doi/10.1109%2FLRA.2020.2994035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2020_2994035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon