Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice Continuous Greedy Algorithm on Median Complex

We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 194; číslo 1-2; s. 85 - 119
Hlavní autoři: Maehara, Takanori, Nakashima, So, Yamaguchi, Yutaro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( 1 - 1 / e )-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions . The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01620-7