Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice Continuous Greedy Algorithm on Median Complex

We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 194; číslo 1-2; s. 85 - 119
Hlavní autoři: Maehara, Takanori, Nakashima, So, Yamaguchi, Yutaro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( 1 - 1 / e )-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions . The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
AbstractList We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( 1 - 1 / e )-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions . The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
Author Maehara, Takanori
Nakashima, So
Yamaguchi, Yutaro
Author_xml – sequence: 1
  givenname: Takanori
  orcidid: 0000-0002-2101-1484
  surname: Maehara
  fullname: Maehara, Takanori
  email: takanori.maehara@riken.jp
  organization: RIKEN AIP
– sequence: 2
  givenname: So
  surname: Nakashima
  fullname: Nakashima, So
  organization: The University of Tokyo
– sequence: 3
  givenname: Yutaro
  surname: Yamaguchi
  fullname: Yamaguchi, Yutaro
  organization: Kyushu University
BookMark eNp9kM1KAzEQgINUsFZfwNO-QHSS3STbo9RfqAiiB08hm00k7W5SNllRn9609eShMMxc5puf7xRNfPAGoQsClwRAXEUCBAQGSjAQTgGLIzQlVclxxSs-QVMAyjDjBE7QaYwrACBlXU_R-9PYJbfpTLH2ahOVXmMdfEyDct60RR98SHlVcfOC49j0oR07NRS9-nK9-1HJBV_kaF0mXDMm92mKTqXktDlDx1Z10Zz_1Rl6u7t9XTzg5fP94-J6iTWdk4RZzZktOa-U0cSqknIBwJSw1FgArnVj7DynujZzUXHDLPCmAmgps8IyXc5QvZ-rhxDjYKzULu0u2z7RSQJyq0juFcmsSO4USZFR-g_dDK5Xw_dhqNxDMTf7DzPIVRgHn188RP0CeqN9ug
CitedBy_id crossref_primary_10_1007_s10898_022_01193_5
crossref_primary_10_3836_tjm_1502179417
Cites_doi 10.1177/0278364904045468
10.1016/0166-218X(84)90003-9
10.1007/s10107-018-1324-y
10.1137/080733991
10.1007/BF01588971
10.1090/conm/453/08795
10.1006/aama.1998.0583
10.1287/opre.26.2.305
10.1007/978-3-662-12494-9
10.1023/B:JOCO.0000038913.96607.c2
10.2140/agt.2010.10.2277
10.1137/110839655
10.1016/S0167-6377(03)00062-2
10.1287/mnsc.23.8.789
10.1137/1.9781611973068.60
10.1017/CBO9781139177801.004
10.1109/CDC.2010.5717225
10.1145/1374376.1374389
10.1007/978-3-319-28684-6_12
10.1006/aama.1999.0677
10.1007/978-3-642-68874-4_10
10.1198/000313002119
10.1080/01621459.1963.10500830
10.1145/2187836.2187888
10.1609/aaai.v33i01.33014618
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021
DBID AAYXX
CITATION
DOI 10.1007/s10107-021-01620-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 119
ExternalDocumentID 10_1007_s10107_021_01620_7
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP19J22607
– fundername: Japan Society for the Promotion of Science
  grantid: 19K20219
  funderid: http://dx.doi.org/10.13039/501100001691
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c291t-5865f3664aec1fa3267005a7f2ef006ccbef9cbe88e9746e5f06b400d25f7f5c3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614784000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 03:34:02 EST 2025
Tue Nov 18 22:18:26 EST 2025
Fri Feb 21 02:46:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 90C27 (Mathematical programming; Combinatorial Optimization)
Distributive lattices
Continuous greedy
Median complex
Submodular maximization
68W25 (Algorithms in computer science; Approximation Algorithm)
06D99 (Distributive lattices; None of the above, but in this section)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5865f3664aec1fa3267005a7f2ef006ccbef9cbe88e9746e5f06b400d25f7f5c3
ORCID 0000-0002-2101-1484
PageCount 35
ParticipantIDs crossref_citationtrail_10_1007_s10107_021_01620_7
crossref_primary_10_1007_s10107_021_01620_7
springer_journals_10_1007_s10107_021_01620_7
PublicationCentury 2000
PublicationDate 20220700
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 7
  year: 2022
  text: 20220700
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Grätzer (CR18) 2002
Cornnejols, Fisher, Nemhauser (CR13) 1977; 23
Ageev, Sviridenko (CR2) 2004; 8
Calinescu, Chekuri, Pál, Vondrák (CR8) 2011; 40
CR19
CR17
CR16
CR14
CR35
CR11
CR31
Hirai (CR20) 2018; 61
CR30
Chekuri, Vondrák, Zenklusen (CR10) 2014; 43
Bandelt, Chepoi (CR4) 2008; 453
Abrams, Ghrist (CR1) 2004; 23
Bridson, Haefliger (CR7) 1999
CR3
Brady, McCammond (CR6) 2010; 10
CR28
CR9
CR26
Soma, Yoshida (CR32) 2018; 172
Fujishige, Tomizawa (CR15) 1983; 26
CR25
CR24
Nemhauser, Wolsey, Fisher (CR29) 1978; 14
CR23
CR22
CR21
Murota (CR27) 2016; 1
Topkis (CR34) 1978; 26
Sviridenko (CR33) 2004; 32
Conforti, Cornuéjols (CR12) 1984; 7
Barnabei, Nicoletti, Pezzoli (CR5) 1998; 21
AA Ageev (1620_CR2) 2004; 8
G Grätzer (1620_CR18) 2002
1620_CR28
MR Bridson (1620_CR7) 1999
1620_CR9
HJ Bandelt (1620_CR4) 2008; 453
1620_CR3
T Soma (1620_CR32) 2018; 172
G Cornnejols (1620_CR13) 1977; 23
M Sviridenko (1620_CR33) 2004; 32
C Chekuri (1620_CR10) 2014; 43
S Fujishige (1620_CR15) 1983; 26
GL Nemhauser (1620_CR29) 1978; 14
DM Topkis (1620_CR34) 1978; 26
H Hirai (1620_CR20) 2018; 61
1620_CR22
1620_CR21
M Conforti (1620_CR12) 1984; 7
1620_CR26
M Barnabei (1620_CR5) 1998; 21
1620_CR25
1620_CR24
A Abrams (1620_CR1) 2004; 23
1620_CR23
1620_CR19
1620_CR17
1620_CR16
G Calinescu (1620_CR8) 2011; 40
T Brady (1620_CR6) 2010; 10
K Murota (1620_CR27) 2016; 1
1620_CR11
1620_CR31
1620_CR30
1620_CR14
1620_CR35
References_xml – ident: CR22
– volume: 23
  start-page: 811
  issue: 7–8
  year: 2004
  end-page: 826
  ident: CR1
  article-title: State complexes for metamorphic robots
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364904045468
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  end-page: 274
  ident: CR12
  article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– ident: CR14
– ident: CR16
– ident: CR30
– volume: 172
  start-page: 539
  issue: 1–2
  year: 2018
  end-page: 563
  ident: CR32
  article-title: Maximizing monotone submodular functions over the integer lattice
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1324-y
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  end-page: 1766
  ident: CR8
  article-title: Maximizing a monotone submodular function subject to a matroid constraint
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– ident: CR35
– ident: CR25
– ident: CR23
– volume: 26
  start-page: 309
  issue: 4
  year: 1983
  end-page: 318
  ident: CR15
  article-title: A note on submodular functions on distributive lattices
  publication-title: J. Oper. Res. Soc. Jpn.
– ident: CR21
– ident: CR19
– volume: 1
  start-page: 151
  issue: 1
  year: 2016
  end-page: 273
  ident: CR27
  article-title: Discrete convex analysis: a tool for economics and game theory
  publication-title: J. Mech. Inst. Des.
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  end-page: 294
  ident: CR29
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– ident: CR3
– volume: 453
  start-page: 49
  year: 2008
  end-page: 86
  ident: CR4
  article-title: Metric graph theory and geometry: a survey
  publication-title: Contemp. Math.
  doi: 10.1090/conm/453/08795
– ident: CR17
– volume: 21
  start-page: 78
  issue: 1
  year: 1998
  end-page: 112
  ident: CR5
  article-title: Matroids on partially ordered sets
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1998.0583
– ident: CR31
– volume: 26
  start-page: 305
  issue: 2
  year: 1978
  end-page: 321
  ident: CR34
  article-title: Minimizing a submodular function on a lattice
  publication-title: Oper. Res.
  doi: 10.1287/opre.26.2.305
– ident: CR11
– year: 1999
  ident: CR7
  publication-title: Metric Spaces of Non-positive Curvature
  doi: 10.1007/978-3-662-12494-9
– ident: CR9
– volume: 8
  start-page: 307
  issue: 3
  year: 2004
  end-page: 328
  ident: CR2
  article-title: Pipage rounding: a new method of constructing algorithms with proven performance guarantee
  publication-title: J. Comb. Optim.
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– year: 2002
  ident: CR18
  publication-title: General Lattice Theory
– volume: 10
  start-page: 2277
  issue: 4
  year: 2010
  end-page: 2314
  ident: CR6
  article-title: Braids, posets and orthoschemes
  publication-title: Algebraic Geom. Topol.
  doi: 10.2140/agt.2010.10.2277
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  end-page: 1879
  ident: CR10
  article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  end-page: 43
  ident: CR33
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 61
  start-page: 71
  issue: 1
  year: 2018
  end-page: 109
  ident: CR20
  article-title: L-convexity on graph structures
  publication-title: J. Oper. Res. Soc. Jpn.
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 23
  start-page: 789
  year: 1977
  end-page: 810
  ident: CR13
  article-title: Location of bank accounts of optimize float: an analytic study of exact and approximate algorithm
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.23.8.789
– ident: 1620_CR23
  doi: 10.1137/1.9781611973068.60
– volume-title: General Lattice Theory
  year: 2002
  ident: 1620_CR18
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 1620_CR12
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– volume: 26
  start-page: 309
  issue: 4
  year: 1983
  ident: 1620_CR15
  publication-title: J. Oper. Res. Soc. Jpn.
– volume: 61
  start-page: 71
  issue: 1
  year: 2018
  ident: 1620_CR20
  publication-title: J. Oper. Res. Soc. Jpn.
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 1620_CR8
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– volume: 453
  start-page: 49
  year: 2008
  ident: 1620_CR4
  publication-title: Contemp. Math.
  doi: 10.1090/conm/453/08795
– ident: 1620_CR26
– ident: 1620_CR24
– ident: 1620_CR22
  doi: 10.1017/CBO9781139177801.004
– volume: 10
  start-page: 2277
  issue: 4
  year: 2010
  ident: 1620_CR6
  publication-title: Algebraic Geom. Topol.
  doi: 10.2140/agt.2010.10.2277
– ident: 1620_CR31
  doi: 10.1109/CDC.2010.5717225
– volume: 8
  start-page: 307
  issue: 3
  year: 2004
  ident: 1620_CR2
  publication-title: J. Comb. Optim.
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: 1620_CR35
  doi: 10.1145/1374376.1374389
– ident: 1620_CR9
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 1620_CR29
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– volume: 21
  start-page: 78
  issue: 1
  year: 1998
  ident: 1620_CR5
  publication-title: Adv. Appl. Math.
  doi: 10.1006/aama.1998.0583
– ident: 1620_CR19
– volume: 172
  start-page: 539
  issue: 1–2
  year: 2018
  ident: 1620_CR32
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1324-y
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 1620_CR10
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– ident: 1620_CR30
– ident: 1620_CR17
  doi: 10.1007/978-3-319-28684-6_12
– ident: 1620_CR11
  doi: 10.1006/aama.1999.0677
– volume: 26
  start-page: 305
  issue: 2
  year: 1978
  ident: 1620_CR34
  publication-title: Oper. Res.
  doi: 10.1287/opre.26.2.305
– volume: 1
  start-page: 151
  issue: 1
  year: 2016
  ident: 1620_CR27
  publication-title: J. Mech. Inst. Des.
– ident: 1620_CR25
  doi: 10.1007/978-3-642-68874-4_10
– ident: 1620_CR16
  doi: 10.1198/000313002119
– ident: 1620_CR21
  doi: 10.1080/01621459.1963.10500830
– volume: 23
  start-page: 789
  year: 1977
  ident: 1620_CR13
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.23.8.789
– volume: 23
  start-page: 811
  issue: 7–8
  year: 2004
  ident: 1620_CR1
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364904045468
– ident: 1620_CR3
  doi: 10.1145/2187836.2187888
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 1620_CR33
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume-title: Metric Spaces of Non-positive Curvature
  year: 1999
  ident: 1620_CR7
  doi: 10.1007/978-3-662-12494-9
– ident: 1620_CR14
– ident: 1620_CR28
  doi: 10.1609/aaai.v33i01.33014618
SSID ssj0001388
Score 2.3652236
Snippet We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Subtitle Continuous Greedy Algorithm on Median Complex
Title Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice
URI https://link.springer.com/article/10.1007/s10107-021-01620-7
Volume 194
WOSCitedRecordID wos000614784000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IM3XWhem81R1OKlReqDegr7hGJfNLH4853dbmoLUlAIgcBks5nM7MxkZ75B6EoECVeZMSQOuSQxGBgiMkEJY5JRzkFkDHfNJtJ2m3W72ZMvCiuqbPdqS9Kt1AvFboH9rRba8JdC0JOuow0wd8w2bOg8v83X3yBirGrUar0DXyrz-xjL5mh5L9SZmObu_ya3h3a8S4lvZzKwj9b08ABtLwANwlVrjs5aHKL3ls8ixB9DPi64_CDSuom2W4RWGARzZCG68X2HFGAuR8qmquIB_-oNfNUmhkNZyF3XLWuqcZ-XNovuCL02H17uHolvsUBkmAUlSRhNTERpzLUMDAdfLgW15KkJtQF9lFJok8GJMQ2BB9WJaVABaq_CxKQmkdExqg1hRicIKxgkjUSiFPhggfUcoowywWMh4FGqUUdBxelcevxx-2L9_Ac52TIxBybmjol5WkfX83vGM_SNldQ31cfJvSYWK8hP_0Z-hrZCW_rgUnXPUa2cfOoLtCmnZa-YXDoR_AaJNdXX
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF60CuqDt1jPffBNF8y12TyKWiq2RWqV-hT2hNKTJhZ_vrNpUluQgkIIBCabzWRmZyY78w1CV8IJuIqMIb7LJfHBwBARCUoYk4xyDiJjeNZsImw0WLsdveRFYUmR7V5sSWYr9Vyxm2N_q7k2_KUQ9ISraM0Hi2UR85uv77P11_EYKxq1Wu8gL5X5fYxFc7S4F5qZmMrO_ya3i7ZzlxLfTWVgD63owT7amgMahKv6DJ01OUAf9TyLEHcHfJRw2SXSuom2W4RWGARzaCG68UOTJGAuh8qmquI-_-r086pNDIeykLtZt6yJxj2e2iy6Q_RWeWzdV0neYoFIN3JSEjAaGI9Sn2vpGA6-XAhqyUPjagP6KKXQJoITYxoCD6oDc0sFqL1yAxOaQHpHqDSAGR0jrGCQ0BOBUuCDOdZz8CLKBPeFgEep2zJyCk7HMscfty_Wi3-Qky0TY2BinDExDsvoenbPaIq-sZT6pvg4ca6JyRLyk7-RX6KNaqtei2tPjedTtOnaMogsbfcMldLxpz5H63KSdpLxRSaO35ia2Ls
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF60iuiDt1jPffBNF5trs3kUa1G0pXhRn8KeUHrSxOLPdzZNagtSECEEApPNZjKzM5Od-QahC-EEXEXGEN_lkvhgYIiIBCWMSUY5B5ExPGs2ETYarNWKmjNV_Fm2e7ElOalpsChN_fR6qMz1TOGbY3-xuTYUphAAhctoxbeJ9DZef3mfrsWOx1jRtNV6CnnZzO9jzJum-X3RzNzUtv4_0W20mbua-GYiGztoSfd30cYMACFc1aeorcke-qjn2YW40-fDhMsOkdZ9tF0ktMIgsAML3Y2rzyQBMzpQNoUV9_hXu5dXc2I4lIXizbpojTXu8tRm1-2jt9rd6-09yVsvEOlGTkoCRgPjUepzLR3DwccLQV15aFxtQE-lFNpEcGJMQ0BCdWAqVMByoNzAhCaQ3gEq9WFGhwgrGCT0RKAU-GaO9Si8iDLBfSHgUapSRk7B9VjmuOT2xbrxD6KyZWIMTIwzJsZhGV1O7xlOUDkWUl8VHyrONTRZQH70N_JztNas1uKnh8bjMVp3bXVEls17gkrp6FOfolU5TtvJ6CyTzG86-eGf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+knapsack-constrained+monotone+DR-submodular+maximization+on+distributive+lattice&rft.jtitle=Mathematical+programming&rft.au=Maehara%2C+Takanori&rft.au=Nakashima%2C+So&rft.au=Yamaguchi%2C+Yutaro&rft.date=2022-07-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=194&rft.issue=1-2&rft.spage=85&rft.epage=119&rft_id=info:doi/10.1007%2Fs10107-021-01620-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01620_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon