Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice Continuous Greedy Algorithm on Median Complex
We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 194; číslo 1-2; s. 85 - 119 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
|
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a (
1
-
1
/
e
)-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a
median complex
as a continuous relaxation of the distributive lattice and define the
multilinear extension
on it. We show that the median complex admits special curves, named
uniform linear motions
. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm. |
|---|---|
| AbstractList | We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a (
1
-
1
/
e
)-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a
median complex
as a continuous relaxation of the distributive lattice and define the
multilinear extension
on it. We show that the median complex admits special curves, named
uniform linear motions
. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm. |
| Author | Maehara, Takanori Nakashima, So Yamaguchi, Yutaro |
| Author_xml | – sequence: 1 givenname: Takanori orcidid: 0000-0002-2101-1484 surname: Maehara fullname: Maehara, Takanori email: takanori.maehara@riken.jp organization: RIKEN AIP – sequence: 2 givenname: So surname: Nakashima fullname: Nakashima, So organization: The University of Tokyo – sequence: 3 givenname: Yutaro surname: Yamaguchi fullname: Yamaguchi, Yutaro organization: Kyushu University |
| BookMark | eNp9kM1KAzEQgINUsFZfwNO-QHSS3STbo9RfqAiiB08hm00k7W5SNllRn9609eShMMxc5puf7xRNfPAGoQsClwRAXEUCBAQGSjAQTgGLIzQlVclxxSs-QVMAyjDjBE7QaYwrACBlXU_R-9PYJbfpTLH2ahOVXmMdfEyDct60RR98SHlVcfOC49j0oR07NRS9-nK9-1HJBV_kaF0mXDMm92mKTqXktDlDx1Z10Zz_1Rl6u7t9XTzg5fP94-J6iTWdk4RZzZktOa-U0cSqknIBwJSw1FgArnVj7DynujZzUXHDLPCmAmgps8IyXc5QvZ-rhxDjYKzULu0u2z7RSQJyq0juFcmsSO4USZFR-g_dDK5Xw_dhqNxDMTf7DzPIVRgHn188RP0CeqN9ug |
| CitedBy_id | crossref_primary_10_1007_s10898_022_01193_5 crossref_primary_10_3836_tjm_1502179417 |
| Cites_doi | 10.1177/0278364904045468 10.1016/0166-218X(84)90003-9 10.1007/s10107-018-1324-y 10.1137/080733991 10.1007/BF01588971 10.1090/conm/453/08795 10.1006/aama.1998.0583 10.1287/opre.26.2.305 10.1007/978-3-662-12494-9 10.1023/B:JOCO.0000038913.96607.c2 10.2140/agt.2010.10.2277 10.1137/110839655 10.1016/S0167-6377(03)00062-2 10.1287/mnsc.23.8.789 10.1137/1.9781611973068.60 10.1017/CBO9781139177801.004 10.1109/CDC.2010.5717225 10.1145/1374376.1374389 10.1007/978-3-319-28684-6_12 10.1006/aama.1999.0677 10.1007/978-3-642-68874-4_10 10.1198/000313002119 10.1080/01621459.1963.10500830 10.1145/2187836.2187888 10.1609/aaai.v33i01.33014618 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10107-021-01620-7 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 119 |
| ExternalDocumentID | 10_1007_s10107_021_01620_7 |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: JP19J22607 – fundername: Japan Society for the Promotion of Science grantid: 19K20219 funderid: http://dx.doi.org/10.13039/501100001691 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c291t-5865f3664aec1fa3267005a7f2ef006ccbef9cbe88e9746e5f06b400d25f7f5c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614784000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 03:34:02 EST 2025 Tue Nov 18 22:18:26 EST 2025 Fri Feb 21 02:46:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1-2 |
| Keywords | 90C27 (Mathematical programming; Combinatorial Optimization) Distributive lattices Continuous greedy Median complex Submodular maximization 68W25 (Algorithms in computer science; Approximation Algorithm) 06D99 (Distributive lattices; None of the above, but in this section) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-5865f3664aec1fa3267005a7f2ef006ccbef9cbe88e9746e5f06b400d25f7f5c3 |
| ORCID | 0000-0002-2101-1484 |
| PageCount | 35 |
| ParticipantIDs | crossref_citationtrail_10_1007_s10107_021_01620_7 crossref_primary_10_1007_s10107_021_01620_7 springer_journals_10_1007_s10107_021_01620_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20220700 2022-07-00 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220700 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Grätzer (CR18) 2002 Cornnejols, Fisher, Nemhauser (CR13) 1977; 23 Ageev, Sviridenko (CR2) 2004; 8 Calinescu, Chekuri, Pál, Vondrák (CR8) 2011; 40 CR19 CR17 CR16 CR14 CR35 CR11 CR31 Hirai (CR20) 2018; 61 CR30 Chekuri, Vondrák, Zenklusen (CR10) 2014; 43 Bandelt, Chepoi (CR4) 2008; 453 Abrams, Ghrist (CR1) 2004; 23 Bridson, Haefliger (CR7) 1999 CR3 Brady, McCammond (CR6) 2010; 10 CR28 CR9 CR26 Soma, Yoshida (CR32) 2018; 172 Fujishige, Tomizawa (CR15) 1983; 26 CR25 CR24 Nemhauser, Wolsey, Fisher (CR29) 1978; 14 CR23 CR22 CR21 Murota (CR27) 2016; 1 Topkis (CR34) 1978; 26 Sviridenko (CR33) 2004; 32 Conforti, Cornuéjols (CR12) 1984; 7 Barnabei, Nicoletti, Pezzoli (CR5) 1998; 21 AA Ageev (1620_CR2) 2004; 8 G Grätzer (1620_CR18) 2002 1620_CR28 MR Bridson (1620_CR7) 1999 1620_CR9 HJ Bandelt (1620_CR4) 2008; 453 1620_CR3 T Soma (1620_CR32) 2018; 172 G Cornnejols (1620_CR13) 1977; 23 M Sviridenko (1620_CR33) 2004; 32 C Chekuri (1620_CR10) 2014; 43 S Fujishige (1620_CR15) 1983; 26 GL Nemhauser (1620_CR29) 1978; 14 DM Topkis (1620_CR34) 1978; 26 H Hirai (1620_CR20) 2018; 61 1620_CR22 1620_CR21 M Conforti (1620_CR12) 1984; 7 1620_CR26 M Barnabei (1620_CR5) 1998; 21 1620_CR25 1620_CR24 A Abrams (1620_CR1) 2004; 23 1620_CR23 1620_CR19 1620_CR17 1620_CR16 G Calinescu (1620_CR8) 2011; 40 T Brady (1620_CR6) 2010; 10 K Murota (1620_CR27) 2016; 1 1620_CR11 1620_CR31 1620_CR30 1620_CR14 1620_CR35 |
| References_xml | – ident: CR22 – volume: 23 start-page: 811 issue: 7–8 year: 2004 end-page: 826 ident: CR1 article-title: State complexes for metamorphic robots publication-title: Int. J. Robot. Res. doi: 10.1177/0278364904045468 – volume: 7 start-page: 251 issue: 3 year: 1984 end-page: 274 ident: CR12 article-title: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the rado-edmonds theorem publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – ident: CR14 – ident: CR16 – ident: CR30 – volume: 172 start-page: 539 issue: 1–2 year: 2018 end-page: 563 ident: CR32 article-title: Maximizing monotone submodular functions over the integer lattice publication-title: Math. Program. doi: 10.1007/s10107-018-1324-y – volume: 40 start-page: 1740 issue: 6 year: 2011 end-page: 1766 ident: CR8 article-title: Maximizing a monotone submodular function subject to a matroid constraint publication-title: SIAM J. Comput. doi: 10.1137/080733991 – ident: CR35 – ident: CR25 – ident: CR23 – volume: 26 start-page: 309 issue: 4 year: 1983 end-page: 318 ident: CR15 article-title: A note on submodular functions on distributive lattices publication-title: J. Oper. Res. Soc. Jpn. – ident: CR21 – ident: CR19 – volume: 1 start-page: 151 issue: 1 year: 2016 end-page: 273 ident: CR27 article-title: Discrete convex analysis: a tool for economics and game theory publication-title: J. Mech. Inst. Des. – volume: 14 start-page: 265 issue: 1 year: 1978 end-page: 294 ident: CR29 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math. Program. doi: 10.1007/BF01588971 – ident: CR3 – volume: 453 start-page: 49 year: 2008 end-page: 86 ident: CR4 article-title: Metric graph theory and geometry: a survey publication-title: Contemp. Math. doi: 10.1090/conm/453/08795 – ident: CR17 – volume: 21 start-page: 78 issue: 1 year: 1998 end-page: 112 ident: CR5 article-title: Matroids on partially ordered sets publication-title: Adv. Appl. Math. doi: 10.1006/aama.1998.0583 – ident: CR31 – volume: 26 start-page: 305 issue: 2 year: 1978 end-page: 321 ident: CR34 article-title: Minimizing a submodular function on a lattice publication-title: Oper. Res. doi: 10.1287/opre.26.2.305 – ident: CR11 – year: 1999 ident: CR7 publication-title: Metric Spaces of Non-positive Curvature doi: 10.1007/978-3-662-12494-9 – ident: CR9 – volume: 8 start-page: 307 issue: 3 year: 2004 end-page: 328 ident: CR2 article-title: Pipage rounding: a new method of constructing algorithms with proven performance guarantee publication-title: J. Comb. Optim. doi: 10.1023/B:JOCO.0000038913.96607.c2 – year: 2002 ident: CR18 publication-title: General Lattice Theory – volume: 10 start-page: 2277 issue: 4 year: 2010 end-page: 2314 ident: CR6 article-title: Braids, posets and orthoschemes publication-title: Algebraic Geom. Topol. doi: 10.2140/agt.2010.10.2277 – volume: 43 start-page: 1831 issue: 6 year: 2014 end-page: 1879 ident: CR10 article-title: Submodular function maximization via the multilinear relaxation and contention resolution schemes publication-title: SIAM J. Comput. doi: 10.1137/110839655 – volume: 32 start-page: 41 issue: 1 year: 2004 end-page: 43 ident: CR33 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – volume: 61 start-page: 71 issue: 1 year: 2018 end-page: 109 ident: CR20 article-title: L-convexity on graph structures publication-title: J. Oper. Res. Soc. Jpn. – ident: CR28 – ident: CR26 – ident: CR24 – volume: 23 start-page: 789 year: 1977 end-page: 810 ident: CR13 article-title: Location of bank accounts of optimize float: an analytic study of exact and approximate algorithm publication-title: Manag. Sci. doi: 10.1287/mnsc.23.8.789 – ident: 1620_CR23 doi: 10.1137/1.9781611973068.60 – volume-title: General Lattice Theory year: 2002 ident: 1620_CR18 – volume: 7 start-page: 251 issue: 3 year: 1984 ident: 1620_CR12 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – volume: 26 start-page: 309 issue: 4 year: 1983 ident: 1620_CR15 publication-title: J. Oper. Res. Soc. Jpn. – volume: 61 start-page: 71 issue: 1 year: 2018 ident: 1620_CR20 publication-title: J. Oper. Res. Soc. Jpn. – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 1620_CR8 publication-title: SIAM J. Comput. doi: 10.1137/080733991 – volume: 453 start-page: 49 year: 2008 ident: 1620_CR4 publication-title: Contemp. Math. doi: 10.1090/conm/453/08795 – ident: 1620_CR26 – ident: 1620_CR24 – ident: 1620_CR22 doi: 10.1017/CBO9781139177801.004 – volume: 10 start-page: 2277 issue: 4 year: 2010 ident: 1620_CR6 publication-title: Algebraic Geom. Topol. doi: 10.2140/agt.2010.10.2277 – ident: 1620_CR31 doi: 10.1109/CDC.2010.5717225 – volume: 8 start-page: 307 issue: 3 year: 2004 ident: 1620_CR2 publication-title: J. Comb. Optim. doi: 10.1023/B:JOCO.0000038913.96607.c2 – ident: 1620_CR35 doi: 10.1145/1374376.1374389 – ident: 1620_CR9 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 1620_CR29 publication-title: Math. Program. doi: 10.1007/BF01588971 – volume: 21 start-page: 78 issue: 1 year: 1998 ident: 1620_CR5 publication-title: Adv. Appl. Math. doi: 10.1006/aama.1998.0583 – ident: 1620_CR19 – volume: 172 start-page: 539 issue: 1–2 year: 2018 ident: 1620_CR32 publication-title: Math. Program. doi: 10.1007/s10107-018-1324-y – volume: 43 start-page: 1831 issue: 6 year: 2014 ident: 1620_CR10 publication-title: SIAM J. Comput. doi: 10.1137/110839655 – ident: 1620_CR30 – ident: 1620_CR17 doi: 10.1007/978-3-319-28684-6_12 – ident: 1620_CR11 doi: 10.1006/aama.1999.0677 – volume: 26 start-page: 305 issue: 2 year: 1978 ident: 1620_CR34 publication-title: Oper. Res. doi: 10.1287/opre.26.2.305 – volume: 1 start-page: 151 issue: 1 year: 2016 ident: 1620_CR27 publication-title: J. Mech. Inst. Des. – ident: 1620_CR25 doi: 10.1007/978-3-642-68874-4_10 – ident: 1620_CR16 doi: 10.1198/000313002119 – ident: 1620_CR21 doi: 10.1080/01621459.1963.10500830 – volume: 23 start-page: 789 year: 1977 ident: 1620_CR13 publication-title: Manag. Sci. doi: 10.1287/mnsc.23.8.789 – volume: 23 start-page: 811 issue: 7–8 year: 2004 ident: 1620_CR1 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364904045468 – ident: 1620_CR3 doi: 10.1145/2187836.2187888 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 1620_CR33 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – volume-title: Metric Spaces of Non-positive Curvature year: 1999 ident: 1620_CR7 doi: 10.1007/978-3-662-12494-9 – ident: 1620_CR14 – ident: 1620_CR28 doi: 10.1609/aaai.v33i01.33014618 |
| SSID | ssj0001388 |
| Score | 2.3652236 |
| Snippet | We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 85 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Full Length Paper Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Theoretical |
| Subtitle | Continuous Greedy Algorithm on Median Complex |
| Title | Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice |
| URI | https://link.springer.com/article/10.1007/s10107-021-01620-7 |
| Volume | 194 |
| WOSCitedRecordID | wos000614784000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7G-2IM3XWhem81R1OKlReqDegr7hGJfNLH4853dbmoLUlAIgcBks5nM7MxkZ75B6EoECVeZMSQOuSQxGBgiMkEJY5JRzkFkDHfNJtJ2m3W72ZMvCiuqbPdqS9Kt1AvFboH9rRba8JdC0JOuow0wd8w2bOg8v83X3yBirGrUar0DXyrz-xjL5mh5L9SZmObu_ya3h3a8S4lvZzKwj9b08ABtLwANwlVrjs5aHKL3ls8ixB9DPi64_CDSuom2W4RWGARzZCG68X2HFGAuR8qmquIB_-oNfNUmhkNZyF3XLWuqcZ-XNovuCL02H17uHolvsUBkmAUlSRhNTERpzLUMDAdfLgW15KkJtQF9lFJok8GJMQ2BB9WJaVABaq_CxKQmkdExqg1hRicIKxgkjUSiFPhggfUcoowywWMh4FGqUUdBxelcevxx-2L9_Ac52TIxBybmjol5WkfX83vGM_SNldQ31cfJvSYWK8hP_0Z-hrZCW_rgUnXPUa2cfOoLtCmnZa-YXDoR_AaJNdXX |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF60CuqDt1jPffBNF8y12TyKWiq2RWqV-hT2hNKTJhZ_vrNpUluQgkIIBCabzWRmZyY78w1CV8IJuIqMIb7LJfHBwBARCUoYk4xyDiJjeNZsImw0WLsdveRFYUmR7V5sSWYr9Vyxm2N_q7k2_KUQ9ISraM0Hi2UR85uv77P11_EYKxq1Wu8gL5X5fYxFc7S4F5qZmMrO_ya3i7ZzlxLfTWVgD63owT7amgMahKv6DJ01OUAf9TyLEHcHfJRw2SXSuom2W4RWGARzaCG68UOTJGAuh8qmquI-_-r086pNDIeykLtZt6yJxj2e2iy6Q_RWeWzdV0neYoFIN3JSEjAaGI9Sn2vpGA6-XAhqyUPjagP6KKXQJoITYxoCD6oDc0sFqL1yAxOaQHpHqDSAGR0jrGCQ0BOBUuCDOdZz8CLKBPeFgEep2zJyCk7HMscfty_Wi3-Qky0TY2BinDExDsvoenbPaIq-sZT6pvg4ca6JyRLyk7-RX6KNaqtei2tPjedTtOnaMogsbfcMldLxpz5H63KSdpLxRSaO35ia2Ls |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF60iuiDt1jPffBNF5trs3kUa1G0pXhRn8KeUHrSxOLPdzZNagtSECEEApPNZjKzM5Od-QahC-EEXEXGEN_lkvhgYIiIBCWMSUY5B5ExPGs2ETYarNWKmjNV_Fm2e7ElOalpsChN_fR6qMz1TOGbY3-xuTYUphAAhctoxbeJ9DZef3mfrsWOx1jRtNV6CnnZzO9jzJum-X3RzNzUtv4_0W20mbua-GYiGztoSfd30cYMACFc1aeorcke-qjn2YW40-fDhMsOkdZ9tF0ktMIgsAML3Y2rzyQBMzpQNoUV9_hXu5dXc2I4lIXizbpojTXu8tRm1-2jt9rd6-09yVsvEOlGTkoCRgPjUepzLR3DwccLQV15aFxtQE-lFNpEcGJMQ0BCdWAqVMByoNzAhCaQ3gEq9WFGhwgrGCT0RKAU-GaO9Si8iDLBfSHgUapSRk7B9VjmuOT2xbrxD6KyZWIMTIwzJsZhGV1O7xlOUDkWUl8VHyrONTRZQH70N_JztNas1uKnh8bjMVp3bXVEls17gkrp6FOfolU5TtvJ6CyTzG86-eGf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+knapsack-constrained+monotone+DR-submodular+maximization+on+distributive+lattice&rft.jtitle=Mathematical+programming&rft.au=Maehara%2C+Takanori&rft.au=Nakashima%2C+So&rft.au=Yamaguchi%2C+Yutaro&rft.date=2022-07-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=194&rft.issue=1-2&rft.spage=85&rft.epage=119&rft_id=info:doi/10.1007%2Fs10107-021-01620-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_021_01620_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |