Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice Continuous Greedy Algorithm on Median Complex

We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 194; H. 1-2; S. 85 - 119
Hauptverfasser: Maehara, Takanori, Nakashima, So, Yamaguchi, Yutaro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( 1 - 1 / e )-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions . The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-021-01620-7