Fast Sampling and Reconstruction for Linear Inverse Problems: From Vectors to Tensors
Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a l...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 70; pp. 6376 - 6391 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> modes is modelled as multilinear on <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> factor matrices <inline-formula><tex-math notation="LaTeX">\lbrace \mathbf {U}_{i}\rbrace ^{R}_{i=1}</tex-math></inline-formula>, whose vectorized version is linear on a matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>-the Kronecker product of <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}{\mathbf{\Phi }}^\top</tex-math></inline-formula>. For one-order vector signals, where <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}=\mathbf {U}_{1}</tex-math></inline-formula> is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s directly, thus removing the burden of obtaining <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula> explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods. |
|---|---|
| AbstractList | Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with [Formula Omitted] modes is modelled as multilinear on [Formula Omitted] factor matrices [Formula Omitted], whose vectorized version is linear on a matrix [Formula Omitted]—the Kronecker product of [Formula Omitted]'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix [Formula Omitted]. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of [Formula Omitted]. For one-order vector signals, where [Formula Omitted] is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices [Formula Omitted]'s directly, thus removing the burden of obtaining [Formula Omitted] explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods. Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> modes is modelled as multilinear on <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> factor matrices <inline-formula><tex-math notation="LaTeX">\lbrace \mathbf {U}_{i}\rbrace ^{R}_{i=1}</tex-math></inline-formula>, whose vectorized version is linear on a matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>-the Kronecker product of <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}{\mathbf{\Phi }}^\top</tex-math></inline-formula>. For one-order vector signals, where <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}=\mathbf {U}_{1}</tex-math></inline-formula> is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s directly, thus removing the burden of obtaining <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula> explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods. |
| Author | Wang, Fen Li, Taihao Cheung, Gene Du, Ying Ruan, Yu-Ping |
| Author_xml | – sequence: 1 givenname: Fen orcidid: 0000-0002-9109-4086 surname: Wang fullname: Wang, Fen email: fenwang@zhejianglab.com organization: Zhejiang Lab, Hangzhou, China – sequence: 2 givenname: Gene orcidid: 0000-0002-5571-4137 surname: Cheung fullname: Cheung, Gene email: genec@yorku.ca organization: Department of EECS, York University, Toronto, ON, Canada – sequence: 3 givenname: Taihao surname: Li fullname: Li, Taihao email: lith@zhejianglab.com organization: Zhejiang Lab, Hangzhou, China – sequence: 4 givenname: Ying surname: Du fullname: Du, Ying email: duying_1003@163.com organization: Zhejiang Lab, Hangzhou, China – sequence: 5 givenname: Yu-Ping orcidid: 0000-0002-9800-3271 surname: Ruan fullname: Ruan, Yu-Ping email: ypruan@mail.ustc.edu.cn organization: Zhejiang Lab, Hangzhou, China |
| BookMark | eNp9kM1LAzEQxRepYFu9C14CnrfmezfepFgtFCy2irclm52VLdukJqngf29KxYMHT_Ng3pvH_EbZwDoLWXZJ8IQQrG7Wq-WEYkonjCglJT_JhkRxkmNeyEHSWLBclMXbWTYKYYMx4VzJYfYy0yGild7u-s6-I20b9AzG2RD93sTOWdQ6jxadBe3R3H6CD4CW3tU9bMMtmnm3Ra9govMBRYfWYEOS59lpq_sAFz9znHru19PHfPH0MJ_eLXJDFYm5KEA1uiQlp7UghGJOpamVpLUU6QkDjIiWcQlMtoYwI9KGla2CUjRNSxs2zq6Pd3fefewhxGrj9t6myooWBRGMqUIlFz66jHcheGirne-22n9VBFcHeFWCVx3gVT_wUkT-iZgu6gOP6HXX_xe8OgY7APjtUaWUUhXsG2Zbfbs |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSP_2023_3305079 crossref_primary_10_1109_TSP_2023_3283047 |
| Cites_doi | 10.1109/LSP.2014.2342198 10.1109/TAC.2020.2980924 10.1007/BF03549662 10.1162/NECO_a_00385 10.1109/CDC.2004.1430301 10.2307/4145217 10.23919/EUSIPCO.2019.8902959 10.1109/TSP.2019.2903017 10.1109/TSP.2017.2755586 10.1109/TSP.2014.2299518 10.1016/j.jvcir.2008.03.001 10.1137/1.9780898719109 10.1109/TSP.2019.2914879 10.1007/978-1-4899-7637-6_24 10.1137/1031049 10.1109/MSP.2013.2297439 10.1109/ICASSP.2012.6288476 10.1109/TSP.2017.2690524 10.1109/MGRS.2017.2762087 10.1109/LSP.2013.2297419 10.1109/TSP.2015.2419187 10.1515/9781400833344 10.1109/MSP.2020.3016908 10.1109/GlobalSIP.2016.7905896 10.1109/JPROC.2018.2820126 10.1017/cbo9780511810817 10.1109/TSP.2019.2952044 10.1016/j.jmaa.2019.05.066 10.1109/TSP.2016.2573767 10.1109/TSP.2008.2007095 10.1109/TSP.2020.2988784 10.1109/TSP.2017.2773429 10.1109/TSP.2019.2940129 10.1109/TSP.2017.2742983 10.1109/TSP.2015.2460224 10.1007/springerreference_186882 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TSP.2022.3199664 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 6391 |
| ExternalDocumentID | 10_1109_TSP_2022_3199664 9866697 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Major Scientific Project of Zhejiang Lab grantid: 2020KB0AC01 – fundername: China Postdoctoral Science Foundation grantid: 2021TQ0309 funderid: 10.13039/501100002858 – fundername: National Science and Technology Major Project of China grantid: 2021ZD0114300 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2019-06271; RGPAS-2019-00110 funderid: 10.13039/501100000038 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-57e9da81842b51120426cb962b65996ce315f346e36fc13c562b38f9e85ddf2d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932431100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Mon Jun 30 10:04:44 EDT 2025 Tue Nov 18 22:27:42 EST 2025 Sat Nov 29 04:10:56 EST 2025 Wed Aug 27 02:18:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-57e9da81842b51120426cb962b65996ce315f346e36fc13c562b38f9e85ddf2d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9109-4086 0000-0002-9800-3271 0000-0002-5571-4137 |
| PQID | 2771533979 |
| PQPubID | 85478 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2771533979 crossref_primary_10_1109_TSP_2022_3199664 crossref_citationtrail_10_1109_TSP_2022_3199664 ieee_primary_9866697 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 Orfanidis (ref9) 2016 ref10 ref32 ref2 ref1 ref39 ref16 ref38 ref19 ref18 Fujishige (ref34) 2005; 58 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref6 ref5 Liu (ref17) 2017 ref40 |
| References_xml | – ident: ref18 doi: 10.1109/LSP.2014.2342198 – ident: ref24 doi: 10.1109/TAC.2020.2980924 – ident: ref6 doi: 10.1007/BF03549662 – ident: ref13 doi: 10.1162/NECO_a_00385 – ident: ref20 doi: 10.1109/CDC.2004.1430301 – ident: ref39 doi: 10.2307/4145217 – ident: ref29 doi: 10.23919/EUSIPCO.2019.8902959 – ident: ref22 doi: 10.1109/TSP.2019.2903017 – ident: ref35 doi: 10.1109/TSP.2017.2755586 – ident: ref26 doi: 10.1109/TSP.2014.2299518 – ident: ref10 doi: 10.1016/j.jvcir.2008.03.001 – ident: ref27 doi: 10.1137/1.9780898719109 – ident: ref2 doi: 10.1109/TSP.2019.2914879 – ident: ref28 doi: 10.1007/978-1-4899-7637-6_24 – ident: ref40 doi: 10.1137/1031049 – volume-title: Introduction to Signal Processing year: 2016 ident: ref9 – ident: ref3 doi: 10.1109/MSP.2013.2297439 – start-page: 785 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2017 ident: ref17 article-title: A new theory for matrix completion, – ident: ref12 doi: 10.1109/ICASSP.2012.6288476 – ident: ref4 doi: 10.1109/TSP.2017.2690524 – ident: ref16 doi: 10.1109/MGRS.2017.2762087 – ident: ref23 article-title: List of friends episodes, – ident: ref36 doi: 10.1109/LSP.2013.2297419 – ident: ref8 doi: 10.1109/TSP.2015.2419187 – ident: ref30 doi: 10.1515/9781400833344 – ident: ref32 doi: 10.1109/MSP.2020.3016908 – ident: ref19 doi: 10.1109/GlobalSIP.2016.7905896 – ident: ref38 doi: 10.1109/JPROC.2018.2820126 – ident: ref37 doi: 10.1017/cbo9780511810817 – ident: ref1 doi: 10.1109/TSP.2019.2952044 – ident: ref5 doi: 10.1016/j.jmaa.2019.05.066 – ident: ref21 doi: 10.1109/TSP.2016.2573767 – volume: 58 volume-title: Submodular Functions and Optimization year: 2005 ident: ref34 – ident: ref25 doi: 10.1109/TSP.2008.2007095 – ident: ref14 doi: 10.1109/TSP.2020.2988784 – ident: ref33 doi: 10.1109/TSP.2017.2773429 – ident: ref31 doi: 10.1109/TSP.2019.2940129 – ident: ref7 doi: 10.1109/TSP.2017.2742983 – ident: ref15 doi: 10.1109/TSP.2015.2460224 – ident: ref11 doi: 10.1007/springerreference_186882 |
| SSID | ssj0014496 |
| Score | 2.4010098 |
| Snippet | Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6376 |
| SubjectTerms | Algorithms Complexity theory Image reconstruction Inverse problems Iterative methods Kronecker product linear inverse problem Mathematical models Matrices (mathematics) Matrix decomposition matrix inversion formula Reconstruction Sampling Sampling methods Signal processing algorithms Tensors |
| Title | Fast Sampling and Reconstruction for Linear Inverse Problems: From Vectors to Tensors |
| URI | https://ieeexplore.ieee.org/document/9866697 https://www.proquest.com/docview/2771533979 |
| Volume | 70 |
| WOSCitedRecordID | wos000932431100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8KAHv6Y4nZKDF8G6NU2axJuIw4OMwabsVtp8iKCtrNW_35e0m4oieMshCeW9pO_3ey_vPYROlc2EUS6sbjIbUKFFIDRJgxSMS6iFtIz5ROE7Ph6L-VxOWuh8lQtjjPGPz8yFG_pYvi7Um3OVDaQAsC15G7U5j-tcrVXEgFLfiwvgQhQwwefLkORQDmbTCRBBQoCfOnRPv5kg31Plx4_YW5fR1v--axttNigSX9Vq30Etk--ijS-1BbvofpSWFZ6m7sV4_ojTXGNHNT8LxmKAqxioKBx17KptLEqDJ3V7mfISjxbFC37wLv0SVwWeAd2F4R7sezO7vg2aHgqBIjKsAsaN1ClYZUoyh60cZVKZjEkWu8IsykQhsxGNTRRbFUYK4FAWCSuNYFpboqN91MmL3Bwg7PrFagWIidqYakElZWGWxtpopmJBbA8NlmJNVFNg3PW5eE480RjKBBSROEUkjSJ66Gy14rUurvHH3K4T_GpeI_Me6i81lzS3r0wI5w7GSi4Pf191hNbd3rUrpY86IHlzjNbUe_VULk78wfoAOZzLOw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1Dz4Ili3pkmb-CbimDjHYFP2Vtp8iKCtrNO_3yTtpqIIvuUhSctd2vv97nJ3ACdCp0wJG1ZXqfYIk8xjEideYoyLLxnXlLpE4V7U77PxmA9qcDbPhVFKuctn6twOXSxf5uLNuspanBmwzaMFWKSE4HaZrTWPGRDiunEZwBB4lEXjWVCyzVuj4cBQQYwNQ7X4nnwzQq6ryo9fsbMvnfX_vdkGrFU4El2Wit-Emsq2YPVLdcFtuO8kxRQNE3tnPHtESSaRJZufJWORAazIkFFz2JGttzEpFBqUDWaKC9SZ5C_owTn1CzTN0cgQXjPcMftej666XtVFwROY-1OPRorLxNhlglOLrixpEikPcRra0ixCBT7VAQlVEGrhB8IAojRgmitGpdRYBrtQz_JM7QGyHWOlMJiJ6JBIRjihfpqEUkkqQoZ1A1ozscaiKjFuO108x45qtHlsFBFbRcSVIhpwOl_xWpbX-GPuthX8fF4l8wY0Z5qLq--viHEUWSDLI77_-6pjWO6O7npx76Z_ewAr9jmlY6UJdaMFdQhL4n36VEyO3CH7APchzoI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Sampling+and+Reconstruction+for+Linear+Inverse+Problems%3A+From+Vectors+to+Tensors&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Fen&rft.au=Cheung%2C+Gene&rft.au=Li%2C+Taihao&rft.au=Du%2C+Ying&rft.date=2022&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=6376&rft.epage=6391&rft_id=info:doi/10.1109%2FTSP.2022.3199664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3199664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |