Fast Sampling and Reconstruction for Linear Inverse Problems: From Vectors to Tensors

Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 70; pp. 6376 - 6391
Main Authors: Wang, Fen, Cheung, Gene, Li, Taihao, Du, Ying, Ruan, Yu-Ping
Format: Journal Article
Language:English
Published: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> modes is modelled as multilinear on <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> factor matrices <inline-formula><tex-math notation="LaTeX">\lbrace \mathbf {U}_{i}\rbrace ^{R}_{i=1}</tex-math></inline-formula>, whose vectorized version is linear on a matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>-the Kronecker product of <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}{\mathbf{\Phi }}^\top</tex-math></inline-formula>. For one-order vector signals, where <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}=\mathbf {U}_{1}</tex-math></inline-formula> is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s directly, thus removing the burden of obtaining <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula> explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods.
AbstractList Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with [Formula Omitted] modes is modelled as multilinear on [Formula Omitted] factor matrices [Formula Omitted], whose vectorized version is linear on a matrix [Formula Omitted]—the Kronecker product of [Formula Omitted]'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix [Formula Omitted]. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of [Formula Omitted]. For one-order vector signals, where [Formula Omitted] is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices [Formula Omitted]'s directly, thus removing the burden of obtaining [Formula Omitted] explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods.
Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly assumed to be linear in the residing factor mode(s) with low-dimensional parameters, and thus can be recovered from partial samples by solving a linear inverse problem (LIP). Sampling for LIPs is to partially query signals for better recovery. There exist many fast sampling methods for vector signals, but they are not applicable for higher-order tensors due to high computation and storage costs. In this paper, we propose a fast sampling algorithm for vector signals first and then extend it to sample tensors with low complexity. Specifically, a tensor signal with <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> modes is modelled as multilinear on <inline-formula><tex-math notation="LaTeX">R</tex-math></inline-formula> factor matrices <inline-formula><tex-math notation="LaTeX">\lbrace \mathbf {U}_{i}\rbrace ^{R}_{i=1}</tex-math></inline-formula>, whose vectorized version is linear on a matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>-the Kronecker product of <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s. Thus, it can be estimated from partial noisy samples via the least-squares (LS) method, where the mean square error (MSE) depends on chosen samples and matrix <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula>. Instead of MSE, we minimize a modified MSE problem and prove it has the same optimal and greedy solutions to a problem with a sample-dependent sub-matrix of <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}{\mathbf{\Phi }}^\top</tex-math></inline-formula>. For one-order vector signals, where <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}=\mathbf {U}_{1}</tex-math></inline-formula> is given, we propose a fast algorithm to solve the sampling problem via simple vector-vector multiplications based on a matrix inversion formula and greedy solution reuse. For higher-order tensors, we extend our sampling algorithm to select entries by addressing matrices <inline-formula><tex-math notation="LaTeX">\mathbf {U}_{i}</tex-math></inline-formula>'s directly, thus removing the burden of obtaining <inline-formula><tex-math notation="LaTeX">{\mathbf{\Phi }}</tex-math></inline-formula> explicitly. Accompanying our sampling strategy, we propose an iterative reconstruction scheme to estimate the LS solution. Experiments on synthetic and real-world signals from vectors to tensors validated the performance and efficacy of our strategy compared to previous methods.
Author Wang, Fen
Li, Taihao
Cheung, Gene
Du, Ying
Ruan, Yu-Ping
Author_xml – sequence: 1
  givenname: Fen
  orcidid: 0000-0002-9109-4086
  surname: Wang
  fullname: Wang, Fen
  email: fenwang@zhejianglab.com
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 2
  givenname: Gene
  orcidid: 0000-0002-5571-4137
  surname: Cheung
  fullname: Cheung, Gene
  email: genec@yorku.ca
  organization: Department of EECS, York University, Toronto, ON, Canada
– sequence: 3
  givenname: Taihao
  surname: Li
  fullname: Li, Taihao
  email: lith@zhejianglab.com
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 4
  givenname: Ying
  surname: Du
  fullname: Du, Ying
  email: duying_1003@163.com
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 5
  givenname: Yu-Ping
  orcidid: 0000-0002-9800-3271
  surname: Ruan
  fullname: Ruan, Yu-Ping
  email: ypruan@mail.ustc.edu.cn
  organization: Zhejiang Lab, Hangzhou, China
BookMark eNp9kM1LAzEQxRepYFu9C14CnrfmezfepFgtFCy2irclm52VLdukJqngf29KxYMHT_Ng3pvH_EbZwDoLWXZJ8IQQrG7Wq-WEYkonjCglJT_JhkRxkmNeyEHSWLBclMXbWTYKYYMx4VzJYfYy0yGild7u-s6-I20b9AzG2RD93sTOWdQ6jxadBe3R3H6CD4CW3tU9bMMtmnm3Ra9govMBRYfWYEOS59lpq_sAFz9znHru19PHfPH0MJ_eLXJDFYm5KEA1uiQlp7UghGJOpamVpLUU6QkDjIiWcQlMtoYwI9KGla2CUjRNSxs2zq6Pd3fefewhxGrj9t6myooWBRGMqUIlFz66jHcheGirne-22n9VBFcHeFWCVx3gVT_wUkT-iZgu6gOP6HXX_xe8OgY7APjtUaWUUhXsG2Zbfbs
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2023_3305079
crossref_primary_10_1109_TSP_2023_3283047
Cites_doi 10.1109/LSP.2014.2342198
10.1109/TAC.2020.2980924
10.1007/BF03549662
10.1162/NECO_a_00385
10.1109/CDC.2004.1430301
10.2307/4145217
10.23919/EUSIPCO.2019.8902959
10.1109/TSP.2019.2903017
10.1109/TSP.2017.2755586
10.1109/TSP.2014.2299518
10.1016/j.jvcir.2008.03.001
10.1137/1.9780898719109
10.1109/TSP.2019.2914879
10.1007/978-1-4899-7637-6_24
10.1137/1031049
10.1109/MSP.2013.2297439
10.1109/ICASSP.2012.6288476
10.1109/TSP.2017.2690524
10.1109/MGRS.2017.2762087
10.1109/LSP.2013.2297419
10.1109/TSP.2015.2419187
10.1515/9781400833344
10.1109/MSP.2020.3016908
10.1109/GlobalSIP.2016.7905896
10.1109/JPROC.2018.2820126
10.1017/cbo9780511810817
10.1109/TSP.2019.2952044
10.1016/j.jmaa.2019.05.066
10.1109/TSP.2016.2573767
10.1109/TSP.2008.2007095
10.1109/TSP.2020.2988784
10.1109/TSP.2017.2773429
10.1109/TSP.2019.2940129
10.1109/TSP.2017.2742983
10.1109/TSP.2015.2460224
10.1007/springerreference_186882
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2022.3199664
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 6391
ExternalDocumentID 10_1109_TSP_2022_3199664
9866697
Genre orig-research
GrantInformation_xml – fundername: Major Scientific Project of Zhejiang Lab
  grantid: 2020KB0AC01
– fundername: China Postdoctoral Science Foundation
  grantid: 2021TQ0309
  funderid: 10.13039/501100002858
– fundername: National Science and Technology Major Project of China
  grantid: 2021ZD0114300
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-06271; RGPAS-2019-00110
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-57e9da81842b51120426cb962b65996ce315f346e36fc13c562b38f9e85ddf2d3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000932431100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:04:44 EDT 2025
Tue Nov 18 22:27:42 EST 2025
Sat Nov 29 04:10:56 EST 2025
Wed Aug 27 02:18:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-57e9da81842b51120426cb962b65996ce315f346e36fc13c562b38f9e85ddf2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9109-4086
0000-0002-9800-3271
0000-0002-5571-4137
PQID 2771533979
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_2771533979
crossref_primary_10_1109_TSP_2022_3199664
crossref_citationtrail_10_1109_TSP_2022_3199664
ieee_primary_9866697
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
Orfanidis (ref9) 2016
ref10
ref32
ref2
ref1
ref39
ref16
ref38
ref19
ref18
Fujishige (ref34) 2005; 58
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
Liu (ref17) 2017
ref40
References_xml – ident: ref18
  doi: 10.1109/LSP.2014.2342198
– ident: ref24
  doi: 10.1109/TAC.2020.2980924
– ident: ref6
  doi: 10.1007/BF03549662
– ident: ref13
  doi: 10.1162/NECO_a_00385
– ident: ref20
  doi: 10.1109/CDC.2004.1430301
– ident: ref39
  doi: 10.2307/4145217
– ident: ref29
  doi: 10.23919/EUSIPCO.2019.8902959
– ident: ref22
  doi: 10.1109/TSP.2019.2903017
– ident: ref35
  doi: 10.1109/TSP.2017.2755586
– ident: ref26
  doi: 10.1109/TSP.2014.2299518
– ident: ref10
  doi: 10.1016/j.jvcir.2008.03.001
– ident: ref27
  doi: 10.1137/1.9780898719109
– ident: ref2
  doi: 10.1109/TSP.2019.2914879
– ident: ref28
  doi: 10.1007/978-1-4899-7637-6_24
– ident: ref40
  doi: 10.1137/1031049
– volume-title: Introduction to Signal Processing
  year: 2016
  ident: ref9
– ident: ref3
  doi: 10.1109/MSP.2013.2297439
– start-page: 785
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref17
  article-title: A new theory for matrix completion,
– ident: ref12
  doi: 10.1109/ICASSP.2012.6288476
– ident: ref4
  doi: 10.1109/TSP.2017.2690524
– ident: ref16
  doi: 10.1109/MGRS.2017.2762087
– ident: ref23
  article-title: List of friends episodes,
– ident: ref36
  doi: 10.1109/LSP.2013.2297419
– ident: ref8
  doi: 10.1109/TSP.2015.2419187
– ident: ref30
  doi: 10.1515/9781400833344
– ident: ref32
  doi: 10.1109/MSP.2020.3016908
– ident: ref19
  doi: 10.1109/GlobalSIP.2016.7905896
– ident: ref38
  doi: 10.1109/JPROC.2018.2820126
– ident: ref37
  doi: 10.1017/cbo9780511810817
– ident: ref1
  doi: 10.1109/TSP.2019.2952044
– ident: ref5
  doi: 10.1016/j.jmaa.2019.05.066
– ident: ref21
  doi: 10.1109/TSP.2016.2573767
– volume: 58
  volume-title: Submodular Functions and Optimization
  year: 2005
  ident: ref34
– ident: ref25
  doi: 10.1109/TSP.2008.2007095
– ident: ref14
  doi: 10.1109/TSP.2020.2988784
– ident: ref33
  doi: 10.1109/TSP.2017.2773429
– ident: ref31
  doi: 10.1109/TSP.2019.2940129
– ident: ref7
  doi: 10.1109/TSP.2017.2742983
– ident: ref15
  doi: 10.1109/TSP.2015.2460224
– ident: ref11
  doi: 10.1007/springerreference_186882
SSID ssj0014496
Score 2.4010098
Snippet Signals typical in the real world have different modes, expressed as vectors, matrices, or higher-order tensors. In practice, a target signal is commonly...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6376
SubjectTerms Algorithms
Complexity theory
Image reconstruction
Inverse problems
Iterative methods
Kronecker product
linear inverse problem
Mathematical models
Matrices (mathematics)
Matrix decomposition
matrix inversion formula
Reconstruction
Sampling
Sampling methods
Signal processing algorithms
Tensors
Title Fast Sampling and Reconstruction for Linear Inverse Problems: From Vectors to Tensors
URI https://ieeexplore.ieee.org/document/9866697
https://www.proquest.com/docview/2771533979
Volume 70
WOSCitedRecordID wos000932431100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8KAHv6Y4nZKDF8G6NU2axJuIw4OMwabsVtp8iKCtrNW_35e0m4oieMshCeW9pO_3ey_vPYROlc2EUS6sbjIbUKFFIDRJgxSMS6iFtIz5ROE7Ph6L-VxOWuh8lQtjjPGPz8yFG_pYvi7Um3OVDaQAsC15G7U5j-tcrVXEgFLfiwvgQhQwwefLkORQDmbTCRBBQoCfOnRPv5kg31Plx4_YW5fR1v--axttNigSX9Vq30Etk--ijS-1BbvofpSWFZ6m7sV4_ojTXGNHNT8LxmKAqxioKBx17KptLEqDJ3V7mfISjxbFC37wLv0SVwWeAd2F4R7sezO7vg2aHgqBIjKsAsaN1ClYZUoyh60cZVKZjEkWu8IsykQhsxGNTRRbFUYK4FAWCSuNYFpboqN91MmL3Bwg7PrFagWIidqYakElZWGWxtpopmJBbA8NlmJNVFNg3PW5eE480RjKBBSROEUkjSJ66Gy14rUurvHH3K4T_GpeI_Me6i81lzS3r0wI5w7GSi4Pf191hNbd3rUrpY86IHlzjNbUe_VULk78wfoAOZzLOw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1Dz4Ili3pkmb-CbimDjHYFP2Vtp8iKCtrNO_3yTtpqIIvuUhSctd2vv97nJ3ACdCp0wJG1ZXqfYIk8xjEideYoyLLxnXlLpE4V7U77PxmA9qcDbPhVFKuctn6twOXSxf5uLNuspanBmwzaMFWKSE4HaZrTWPGRDiunEZwBB4lEXjWVCyzVuj4cBQQYwNQ7X4nnwzQq6ryo9fsbMvnfX_vdkGrFU4El2Wit-Emsq2YPVLdcFtuO8kxRQNE3tnPHtESSaRJZufJWORAazIkFFz2JGttzEpFBqUDWaKC9SZ5C_owTn1CzTN0cgQXjPcMftej666XtVFwROY-1OPRorLxNhlglOLrixpEikPcRra0ixCBT7VAQlVEGrhB8IAojRgmitGpdRYBrtQz_JM7QGyHWOlMJiJ6JBIRjihfpqEUkkqQoZ1A1ozscaiKjFuO108x45qtHlsFBFbRcSVIhpwOl_xWpbX-GPuthX8fF4l8wY0Z5qLq--viHEUWSDLI77_-6pjWO6O7npx76Z_ewAr9jmlY6UJdaMFdQhL4n36VEyO3CH7APchzoI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Sampling+and+Reconstruction+for+Linear+Inverse+Problems%3A+From+Vectors+to+Tensors&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Wang%2C+Fen&rft.au=Cheung%2C+Gene&rft.au=Li%2C+Taihao&rft.au=Du%2C+Ying&rft.date=2022&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=6376&rft.epage=6391&rft_id=info:doi/10.1109%2FTSP.2022.3199664&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3199664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon