A Pi-Sigma artificial neural network based on sine cosine optimization algorithm
Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also...
Gespeichert in:
| Veröffentlicht in: | Granular computing (Internet) Jg. 7; H. 4; S. 813 - 820 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.10.2022
|
| Schlagworte: | |
| ISSN: | 2364-4966, 2364-4974 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also be expressed as an artificial neural network model in which both multiplicative neuron model and perceptron are used together. One of the most important success criteria of the Pi-Sigma artificial neural networks is the optimization algorithm used in the training of the network, as in many artificial neural networks. The optimization algorithms used in the training of the network are divided into two parts as derivative-based algorithms and artificial intelligence optimization method-based algorithms. The artificial intelligence optimization algorithms have been used frequently in recent years compared with derivative-based algorithms due to many advantages. As known, one of the success criteria of an artificial neural network model is its training algorithm. Although many optimization algorithms are used in the training of Pi-Sigma artificial neural networks in the literature, the sine cosine algorithm, which is simpler, understandable, and easy to use, has not yet been used compared with many artificial intelligence optimization algorithms. In this study, the sine cosine algorithm is used for the first time in the training of Pi-Sigma artificial neural networks. The motivation of the paper is the about the evaluation of sine cosine algorithm performance in the training of Pi-Sigma artificial neural networks. The reason for the preference of using sine cosine algorithm is that the algorithm has not some specific operators that many artificial optimizations have and it uses the advantages of sine cosine functions easily. The performance of the proposed method is compared with many methods that are frequently used in the forecasting literature, especially many artificial neural networks models that use different optimization algorithms in the training process. Some popular time series, which are frequently used in the forecasting literature, are used in the analysis process, and as a result of the analysis process, it is concluded that the proposed method has better performance than other methods. |
|---|---|
| AbstractList | Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also be expressed as an artificial neural network model in which both multiplicative neuron model and perceptron are used together. One of the most important success criteria of the Pi-Sigma artificial neural networks is the optimization algorithm used in the training of the network, as in many artificial neural networks. The optimization algorithms used in the training of the network are divided into two parts as derivative-based algorithms and artificial intelligence optimization method-based algorithms. The artificial intelligence optimization algorithms have been used frequently in recent years compared with derivative-based algorithms due to many advantages. As known, one of the success criteria of an artificial neural network model is its training algorithm. Although many optimization algorithms are used in the training of Pi-Sigma artificial neural networks in the literature, the sine cosine algorithm, which is simpler, understandable, and easy to use, has not yet been used compared with many artificial intelligence optimization algorithms. In this study, the sine cosine algorithm is used for the first time in the training of Pi-Sigma artificial neural networks. The motivation of the paper is the about the evaluation of sine cosine algorithm performance in the training of Pi-Sigma artificial neural networks. The reason for the preference of using sine cosine algorithm is that the algorithm has not some specific operators that many artificial optimizations have and it uses the advantages of sine cosine functions easily. The performance of the proposed method is compared with many methods that are frequently used in the forecasting literature, especially many artificial neural networks models that use different optimization algorithms in the training process. Some popular time series, which are frequently used in the forecasting literature, are used in the analysis process, and as a result of the analysis process, it is concluded that the proposed method has better performance than other methods. |
| Author | Egrioglu, Erol Bas, Eren Karahasan, Ozlem |
| Author_xml | – sequence: 1 givenname: Eren surname: Bas fullname: Bas, Eren organization: Department of Statistics, Faculty of Arts and Science, Giresun University – sequence: 2 givenname: Erol surname: Egrioglu fullname: Egrioglu, Erol email: erol.egrioglu@giresun.edu.tr organization: Department of Statistics, Faculty of Arts and Science, Giresun University – sequence: 3 givenname: Ozlem surname: Karahasan fullname: Karahasan, Ozlem organization: Department of Statistics, Faculty of Arts and Science, Giresun University |
| BookMark | eNp9kE1LAzEQhoNUsGr_gKf8gWiSzcfusRS_oGBBPYdkm9TU3aQkKaK_3nUrHjz09A7MPMPMcw4mIQYLwBXB1wRjeZMZwUIgTAnCmDYSNSdgSivBEGskm_zVQpyBWc5bPExJgqkQU7Caw5VHz37Ta6hT8c63Xncw2H0ao3zE9A6NznYNY4DZBwvbOEbcFd_7L1380NDdJiZf3vpLcOp0l-3sNy_A693ty-IBLZ_uHxfzJWppQwrikhDOakZNvZbOkNZyWjNLrbGWVpJzKioqTc0Nd5I44mqsm2qNnWCGCoarC1Af9rYp5pysU60v4y0lad8pgtWPHHWQowY5apSjmgGl_9Bd8r1On8eh6gDlYThsbFLbuE9hePEY9Q3wtXjW |
| CitedBy_id | crossref_primary_10_1007_s13369_024_09238_5 crossref_primary_10_1002_adts_202300545 crossref_primary_10_1007_s10462_024_10790_7 crossref_primary_10_3390_rs14020347 crossref_primary_10_1007_s41066_023_00390_1 crossref_primary_10_1002_for_2919 crossref_primary_10_1016_j_seares_2025_102613 crossref_primary_10_1007_s10668_024_05075_6 crossref_primary_10_1007_s41066_023_00389_8 crossref_primary_10_1109_ACCESS_2025_3535667 crossref_primary_10_1007_s41066_023_00368_z |
| Cites_doi | 10.1016/j.engappai.2018.04.017 10.1007/s11063-012-9244-y 10.1515/jaiscr-2016-0001 10.1007/s11063-017-9686-3 10.1007/s41066-018-00144-4 10.1207/s15516709cog1402_1 10.1007/s41066-018-00143-5 10.1016/j.knosys.2015.12.022 10.1007/s11063-014-9342-0 10.1007/s41066-019-00168-4 10.1016/j.dss.2012.12.006 10.1007/s10489-015-0647-0 10.1016/j.asoc.2006.01.003 10.1007/s00521-015-1908-x 10.1016/j.asej.2014.12.013 10.1016/j.eswa.2008.01.061 10.1111/coin.12272 10.1007/s41066-021-00274-2 10.1016/j.aci.2019.04.001 10.1109/ICCICCT.2014.6993082 10.1080/02664763.2020.1869702 10.1016/j.asoc.2021.107611 10.1109/ICNC.2008.896 10.1109/IJCNN.1991.155142 10.1007/s10614-020-10086-2 10.1007/s11042-020-10304-x 10.1007/s41066-022-00324-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s41066-021-00297-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2364-4974 |
| EndPage | 820 |
| ExternalDocumentID | 10_1007_s41066_021_00297_9 |
| GroupedDBID | -EM 0R~ 203 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAZMS ABAKF ABBTF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG AVWKF AXYYD AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD H13 HG6 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABDBE ABFSG ABJCF ACSTC AEZWR AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c291t-571154842b8d7fb1ce5284e2ebee2375526327b85b5f71f1f80a93d0f64b26403 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712520000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-4966 |
| IngestDate | Tue Nov 18 21:22:34 EST 2025 Sat Nov 29 06:38:39 EST 2025 Fri Feb 21 02:44:44 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Sine cosine algorithm Pi-Sigma artificial neural networks Forecasting Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-571154842b8d7fb1ce5284e2ebee2375526327b85b5f71f1f80a93d0f64b26403 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1007_s41066_021_00297_9 crossref_primary_10_1007_s41066_021_00297_9 springer_journals_10_1007_s41066_021_00297_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20221000 2022-10-00 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationTitle | Granular computing (Internet) |
| PublicationTitleAbbrev | Granul. Comput |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | Nayak, Naik, Behera (CR19) 2015; 6 Aladag, Yolcu, Egrioglu (CR3) 2013; 37 Panigrahi, Bhoi, Karali (CR25) 2013; 3 CR17 Bas (CR4) 2016; 6 Bas, Grosan, Egrioglu, Yolcu (CR7) 2018; 72 Mirjalili (CR18) 2016; 96 Bas, Yolcu, Egrioglu, Cagcag Yolcu, Dalar (CR6) 2016; 6 CR11 Gupta, Kumar (CR16) 2019; 4 CR33 CR31 CR30 Akdeniz, Egrioglu, Bas, Yolcu (CR1) 2018; 8 Gundogdu, Egrioglu, Aladag, Yolcu (CR15) 2015; 27 Akram, Ghazali, Mushtaq (CR2) 2017; 9 Bas, Egrioglu, Aladag, Yolcu (CR5) 2015; 43 Panda, Majhi (CR24) 2020; 36 Egrioglu, Aladag, Yolcu, Bas (CR12) 2015; 41 Rumelhart, Hinton, Williams (CR27) 1986 CR8 CR28 CR26 Yolcu, Egrioglu, Aladag (CR32) 2013; 54 CR23 CR22 CR21 CR20 Elman (CR14) 1990; 14 Egrioglu, Yolcu, Bas (CR13) 2019; 4 Cagcag Yolcu, Bas, Egrioglu, Yolcu (CR10) 2018; 47 Yadav, Kalra, John (CR29) 2007; 7 Zhao, Yang (CR34) 2009; 36 Bisht, Kumar (CR9) 2019; 4 N Panda (297_CR24) 2020; 36 E Egrioglu (297_CR12) 2015; 41 J Nayak (297_CR19) 2015; 6 E Bas (297_CR6) 2016; 6 U Yolcu (297_CR32) 2013; 54 JL Elman (297_CR14) 1990; 14 297_CR22 297_CR23 297_CR20 297_CR21 297_CR8 297_CR17 KK Gupta (297_CR16) 2019; 4 L Zhao (297_CR34) 2009; 36 CH Aladag (297_CR3) 2013; 37 S Mirjalili (297_CR18) 2016; 96 E Bas (297_CR7) 2018; 72 U Akram (297_CR2) 2017; 9 E Bas (297_CR5) 2015; 43 RN Yadav (297_CR29) 2007; 7 297_CR30 297_CR11 297_CR33 K Bisht (297_CR9) 2019; 4 297_CR31 E Egrioglu (297_CR13) 2019; 4 297_CR26 O Cagcag Yolcu (297_CR10) 2018; 47 S Panigrahi (297_CR25) 2013; 3 E Rumelhart (297_CR27) 1986 E Bas (297_CR4) 2016; 6 297_CR28 O Gundogdu (297_CR15) 2015; 27 E Akdeniz (297_CR1) 2018; 8 |
| References_xml | – volume: 72 start-page: 350 year: 2018 end-page: 356 ident: CR7 article-title: High order fuzzy time series method based on pi-sigma neural network publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.017 – ident: CR22 – volume: 37 start-page: 251 issue: 3 year: 2013 end-page: 262 ident: CR3 article-title: A new multiplicative seasonal neural network model based on particle swarm optimization publication-title: Neural Process Lett doi: 10.1007/s11063-012-9244-y – volume: 6 start-page: 5 issue: 1 year: 2016 end-page: 11 ident: CR4 article-title: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting publication-title: J Artif Intell Soft Comput Res doi: 10.1515/jaiscr-2016-0001 – volume: 6 start-page: 74 issue: 3 year: 2016 end-page: 77 ident: CR6 article-title: Single multiplicative neuron model artificial neuron network trained by bat algorithm for time series forecasting publication-title: Am J Intell Syst – volume: 47 start-page: 1133 year: 2018 end-page: 1147 ident: CR10 article-title: Single multiplicative neuron model artificial neural network with autoregressive coefficient for time series modelling publication-title: Neural Process Lett doi: 10.1007/s11063-017-9686-3 – ident: CR30 – volume: 4 start-page: 655 issue: 4 year: 2019 end-page: 669 ident: CR9 article-title: Hesitant fuzzy set based computational method for financial time series forecasting publication-title: Granul Comput doi: 10.1007/s41066-018-00144-4 – ident: CR33 – volume: 14 start-page: 179 issue: 2 year: 1990 end-page: 211 ident: CR14 article-title: Finding structure in time publication-title: Cogn Sci doi: 10.1207/s15516709cog1402_1 – volume: 8 start-page: 121 year: 2018 end-page: 132 ident: CR1 article-title: An ARMA type Pi-Sigma artificial neural network for nonlinear time series forecasting publication-title: J Artif Intell Soft Comput – ident: CR8 – volume: 4 start-page: 639 issue: 4 year: 2019 end-page: 654 ident: CR13 article-title: Intuitionistic high-order fuzzy time series forecasting method based on pi-sigma artificial neural networks trained by artificial bee colony publication-title: Granul Comput doi: 10.1007/s41066-018-00143-5 – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: CR18 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: CR23 – volume: 41 start-page: 249 issue: 2 year: 2015 end-page: 258 ident: CR12 article-title: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting publication-title: Neural Process Lett doi: 10.1007/s11063-014-9342-0 – volume: 4 start-page: 699 issue: 4 year: 2019 end-page: 713 ident: CR16 article-title: A novel high-order fuzzy time series forecasting method based on probabilistic fuzzy sets publication-title: Granul Comput doi: 10.1007/s41066-019-00168-4 – ident: CR21 – volume: 54 start-page: 1340 year: 2013 end-page: 2134 ident: CR32 article-title: A new linear & nonlinear artificial neural network model for time series forecasting publication-title: Decis Support Syst doi: 10.1016/j.dss.2012.12.006 – volume: 43 start-page: 343 issue: 2 year: 2015 end-page: 355 ident: CR5 article-title: Fuzzy-time-series network used to forecast linear and nonlinear time series publication-title: Appl Intell doi: 10.1007/s10489-015-0647-0 – volume: 7 start-page: 1157 year: 2007 end-page: 1163 ident: CR29 article-title: Time series prediction with single multiplicative neuron model publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2006.01.003 – volume: 3 start-page: 133 issue: 5 year: 2013 end-page: 136 ident: CR25 article-title: A modified differential evolution algorithm trained pi-sigma neural network for pattern classification publication-title: Int J Soft Comput Eng – ident: CR17 – volume: 27 start-page: 927 issue: 4 year: 2015 end-page: 935 ident: CR15 article-title: Multiplicative neuron model artificial neural network based on gauss activation function publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1908-x – ident: CR31 – ident: CR11 – volume: 9 start-page: 57 issue: 3–3 year: 2017 end-page: 62 ident: CR2 article-title: A comprehensive survey on Pi-Sigma neural network for time series prediction publication-title: J Telecommun Electron Comput Eng – volume: 6 start-page: 1069 issue: 3 year: 2015 end-page: 1091 ident: CR19 article-title: A novel chemical reaction optimization based higher order neural network (CRO-HONN) for nonlinear classification publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2014.12.013 – volume: 36 start-page: 2805 year: 2009 end-page: 2812 ident: CR34 article-title: PSO-based single multiplicative neuron model for time series prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.061 – volume: 36 start-page: 320 issue: 1 year: 2020 end-page: 350 ident: CR24 article-title: Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network publication-title: Comput Intell doi: 10.1111/coin.12272 – ident: CR28 – ident: CR26 – ident: CR20 – start-page: 318 year: 1986 end-page: 362 ident: CR27 publication-title: Learning internal representations by error propagation, Chapter 8 – volume: 9 start-page: 57 issue: 3–3 year: 2017 ident: 297_CR2 publication-title: J Telecommun Electron Comput Eng – ident: 297_CR8 doi: 10.1007/s41066-021-00274-2 – ident: 297_CR11 doi: 10.1016/j.aci.2019.04.001 – ident: 297_CR21 – volume: 7 start-page: 1157 year: 2007 ident: 297_CR29 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2006.01.003 – ident: 297_CR20 doi: 10.1109/ICCICCT.2014.6993082 – volume: 4 start-page: 639 issue: 4 year: 2019 ident: 297_CR13 publication-title: Granul Comput doi: 10.1007/s41066-018-00143-5 – volume: 37 start-page: 251 issue: 3 year: 2013 ident: 297_CR3 publication-title: Neural Process Lett doi: 10.1007/s11063-012-9244-y – volume: 36 start-page: 2805 year: 2009 ident: 297_CR34 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.01.061 – volume: 4 start-page: 699 issue: 4 year: 2019 ident: 297_CR16 publication-title: Granul Comput doi: 10.1007/s41066-019-00168-4 – volume: 47 start-page: 1133 year: 2018 ident: 297_CR10 publication-title: Neural Process Lett doi: 10.1007/s11063-017-9686-3 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 297_CR14 publication-title: Cogn Sci doi: 10.1207/s15516709cog1402_1 – volume: 4 start-page: 655 issue: 4 year: 2019 ident: 297_CR9 publication-title: Granul Comput doi: 10.1007/s41066-018-00144-4 – start-page: 318 volume-title: Learning internal representations by error propagation, Chapter 8 year: 1986 ident: 297_CR27 – volume: 6 start-page: 5 issue: 1 year: 2016 ident: 297_CR4 publication-title: J Artif Intell Soft Comput Res doi: 10.1515/jaiscr-2016-0001 – ident: 297_CR30 doi: 10.1080/02664763.2020.1869702 – ident: 297_CR26 doi: 10.1016/j.asoc.2021.107611 – ident: 297_CR22 doi: 10.1109/ICNC.2008.896 – volume: 54 start-page: 1340 year: 2013 ident: 297_CR32 publication-title: Decis Support Syst doi: 10.1016/j.dss.2012.12.006 – ident: 297_CR33 – volume: 96 start-page: 120 year: 2016 ident: 297_CR18 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: 297_CR28 doi: 10.1109/IJCNN.1991.155142 – ident: 297_CR31 doi: 10.1007/s10614-020-10086-2 – volume: 8 start-page: 121 year: 2018 ident: 297_CR1 publication-title: J Artif Intell Soft Comput – volume: 72 start-page: 350 year: 2018 ident: 297_CR7 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.017 – volume: 41 start-page: 249 issue: 2 year: 2015 ident: 297_CR12 publication-title: Neural Process Lett doi: 10.1007/s11063-014-9342-0 – ident: 297_CR23 doi: 10.1007/s11042-020-10304-x – volume: 6 start-page: 74 issue: 3 year: 2016 ident: 297_CR6 publication-title: Am J Intell Syst – volume: 43 start-page: 343 issue: 2 year: 2015 ident: 297_CR5 publication-title: Appl Intell doi: 10.1007/s10489-015-0647-0 – volume: 6 start-page: 1069 issue: 3 year: 2015 ident: 297_CR19 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2014.12.013 – volume: 36 start-page: 320 issue: 1 year: 2020 ident: 297_CR24 publication-title: Comput Intell doi: 10.1111/coin.12272 – ident: 297_CR17 doi: 10.1007/s41066-022-00324-3 – volume: 3 start-page: 133 issue: 5 year: 2013 ident: 297_CR25 publication-title: Int J Soft Comput Eng – volume: 27 start-page: 927 issue: 4 year: 2015 ident: 297_CR15 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1908-x |
| SSID | ssj0002710266 ssib031263429 |
| Score | 2.2631972 |
| Snippet | Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 813 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Engineering Original Paper |
| Title | A Pi-Sigma artificial neural network based on sine cosine optimization algorithm |
| URI | https://link.springer.com/article/10.1007/s41066-021-00297-9 |
| Volume | 7 |
| WOSCitedRecordID | wos000712520000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 2364-4974 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710266 issn: 2364-4966 databaseCode: RSV dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejB6VScX-TgTQNNmzTtcYjD0xhOZbeSr87J1spW_ftN0nQ4kIGeAiUJ5X39EvLe7wFww2PFZEoZYibUIZILjARmGoWhJBLLCMd54JpNsMEgGY_ToS8KWzbZ7s2TpIvUq2I3Ym4vNmHWXH9txyWUboMdA3eJdcen0WtjRREO44h40H93T2sGROO6y1xMEDEHfF898_u26wi1_jzqUKff_t__HoIDf8qEvdosjsCWLjqg3XRwgN6hO2D_Bx3hMRj24HCKRtPJnENrUTW5BLSUl25wCePQ4p6CZQFtxjyUpRtKE3nmvqQT8tmkXEyrt_kJeOk_PN8_It9xAckwxRWizLLzJCQUiWJGb1JTA186NJrWYcQotezuTCRU0JzhHOdJwNNIBXlMhDlZBdEpaBVloc8ADJgyC7j5qBRJApXk5irGleYsEJQL0QW4kXImPR257Yoxy1ZEyk6AmRFg5gSYpV1wu1rzUZNxbJx91ygm84653DD9_G_TL8BeaCshXF7fJWhVi099BXblVzVdLq6dRX4Dh9PWpg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-bBNw00bdq0j0McE-cYbsreSpO0c7KtslX_fpMsHQ5E0KdASUK5u9x3IXffAVwlgWQi8hlmytVhmnGCOWEpdl1BBREeCTLHNJtgnU44GERdWxQ2L7PdyydJ46mXxW5U3V50wqy6_uqOSzhahw2qEEsn8j31Xkor8ogbeNSC_pt5WlMgGiy6zAUUUxXg2-qZn7ddRajV51GDOs3q__53D3ZtlIkaC7PYh7V0WoNq2cEB2QNdg51vdIQH0G2g7gj3RsNJgrRFLcglkKa8NINJGEca9yTKp0hnzCORmyFXnmdiSzpRMh7ms1HxOjmE5-Zd_7aFbccFLNyIFNhnmp0npC4PJVN6E6mv4Ct1laZT12O-r9ndGQ997meMZCQLnSTypJMFlKvIyvGOoDLNp-kxIIdJtSBRH6WkoSPDTF3FEpkmzOF-wnkdSCnlWFg6ct0VYxwviZSNAGMlwNgIMI7qcL1c874g4_h19k2pmNgezPkv00_-Nv0Stlr9x3bcvu88nMK2q6siTI7fGVSK2Ud6DpvisxjNZxfGOr8AoNrZig |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiD06k4f-bBNw1r2rRpH4c6FGUMprK30iTtnGzt2Kp_v0najg1EEJ8C5RLK5ZK7I3ffB3AVeZKJwGWYqasO04QTzAmLsW0LKohwiJdYhmyCdbv-YBD0lrr4TbV79SRZ9DRolKY0b01l0lo0vlGVyejiWZUKa_YlHKzDBtWkQTpf779VFuUQ23NoGQB8mGc25VC9gnHOo5iqYL_spPl52VVvtfpUajxQp_7_f9-D3TL6RO3CXPZhLU4bUK-YHVB50BuwswRTeAC9NuqNcH80nERIW1oBOoE0FKYZTCE50v5QoixFupIeicwMmbqRJmWrJ4rGw2w2yt8nh_DauX-5fcAlEwMWdkBy7DKN2uNTm_uSqf0UsavcWmwrC4hth7muRn1n3He5mzCSkMS3osCRVuJRriIuyzmCWpql8TEgi0k1IVIfpaS-Jf1EpWiRjCNmcTfivAmk0ngoSphyzZYxDhcAy0aBoVJgaBQYBk24XsyZFiAdv0rfVJsUlgd2_ov4yd_EL2Grd9cJnx-7T6ewbetmCVP6dwa1fPYZn8Om-MpH89mFMdRvnFfibg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pi-Sigma+artificial+neural+network+based+on+sine+cosine+optimization+algorithm&rft.jtitle=Granular+computing+%28Internet%29&rft.au=Bas%2C+Eren&rft.au=Egrioglu%2C+Erol&rft.au=Karahasan%2C+Ozlem&rft.date=2022-10-01&rft.pub=Springer+International+Publishing&rft.issn=2364-4966&rft.eissn=2364-4974&rft.volume=7&rft.issue=4&rft.spage=813&rft.epage=820&rft_id=info:doi/10.1007%2Fs41066-021-00297-9&rft.externalDocID=10_1007_s41066_021_00297_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-4966&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-4966&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-4966&client=summon |