A Pi-Sigma artificial neural network based on sine cosine optimization algorithm

Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Granular computing (Internet) Jg. 7; H. 4; S. 813 - 820
Hauptverfasser: Bas, Eren, Egrioglu, Erol, Karahasan, Ozlem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.10.2022
Schlagworte:
ISSN:2364-4966, 2364-4974
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also be expressed as an artificial neural network model in which both multiplicative neuron model and perceptron are used together. One of the most important success criteria of the Pi-Sigma artificial neural networks is the optimization algorithm used in the training of the network, as in many artificial neural networks. The optimization algorithms used in the training of the network are divided into two parts as derivative-based algorithms and artificial intelligence optimization method-based algorithms. The artificial intelligence optimization algorithms have been used frequently in recent years compared with derivative-based algorithms due to many advantages. As known, one of the success criteria of an artificial neural network model is its training algorithm. Although many optimization algorithms are used in the training of Pi-Sigma artificial neural networks in the literature, the sine cosine algorithm, which is simpler, understandable, and easy to use, has not yet been used compared with many artificial intelligence optimization algorithms. In this study, the sine cosine algorithm is used for the first time in the training of Pi-Sigma artificial neural networks. The motivation of the paper is the about the evaluation of sine cosine algorithm performance in the training of Pi-Sigma artificial neural networks. The reason for the preference of using sine cosine algorithm is that the algorithm has not some specific operators that many artificial optimizations have and it uses the advantages of sine cosine functions easily. The performance of the proposed method is compared with many methods that are frequently used in the forecasting literature, especially many artificial neural networks models that use different optimization algorithms in the training process. Some popular time series, which are frequently used in the forecasting literature, are used in the analysis process, and as a result of the analysis process, it is concluded that the proposed method has better performance than other methods.
AbstractList Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of different types of neuron models. Since Pi-Sigma artificial neural networks contain both additive and multiplicative structures, it can also be expressed as an artificial neural network model in which both multiplicative neuron model and perceptron are used together. One of the most important success criteria of the Pi-Sigma artificial neural networks is the optimization algorithm used in the training of the network, as in many artificial neural networks. The optimization algorithms used in the training of the network are divided into two parts as derivative-based algorithms and artificial intelligence optimization method-based algorithms. The artificial intelligence optimization algorithms have been used frequently in recent years compared with derivative-based algorithms due to many advantages. As known, one of the success criteria of an artificial neural network model is its training algorithm. Although many optimization algorithms are used in the training of Pi-Sigma artificial neural networks in the literature, the sine cosine algorithm, which is simpler, understandable, and easy to use, has not yet been used compared with many artificial intelligence optimization algorithms. In this study, the sine cosine algorithm is used for the first time in the training of Pi-Sigma artificial neural networks. The motivation of the paper is the about the evaluation of sine cosine algorithm performance in the training of Pi-Sigma artificial neural networks. The reason for the preference of using sine cosine algorithm is that the algorithm has not some specific operators that many artificial optimizations have and it uses the advantages of sine cosine functions easily. The performance of the proposed method is compared with many methods that are frequently used in the forecasting literature, especially many artificial neural networks models that use different optimization algorithms in the training process. Some popular time series, which are frequently used in the forecasting literature, are used in the analysis process, and as a result of the analysis process, it is concluded that the proposed method has better performance than other methods.
Author Egrioglu, Erol
Bas, Eren
Karahasan, Ozlem
Author_xml – sequence: 1
  givenname: Eren
  surname: Bas
  fullname: Bas, Eren
  organization: Department of Statistics, Faculty of Arts and Science, Giresun University
– sequence: 2
  givenname: Erol
  surname: Egrioglu
  fullname: Egrioglu, Erol
  email: erol.egrioglu@giresun.edu.tr
  organization: Department of Statistics, Faculty of Arts and Science, Giresun University
– sequence: 3
  givenname: Ozlem
  surname: Karahasan
  fullname: Karahasan, Ozlem
  organization: Department of Statistics, Faculty of Arts and Science, Giresun University
BookMark eNp9kE1LAzEQhoNUsGr_gKf8gWiSzcfusRS_oGBBPYdkm9TU3aQkKaK_3nUrHjz09A7MPMPMcw4mIQYLwBXB1wRjeZMZwUIgTAnCmDYSNSdgSivBEGskm_zVQpyBWc5bPExJgqkQU7Caw5VHz37Ta6hT8c63Xncw2H0ao3zE9A6NznYNY4DZBwvbOEbcFd_7L1380NDdJiZf3vpLcOp0l-3sNy_A693ty-IBLZ_uHxfzJWppQwrikhDOakZNvZbOkNZyWjNLrbGWVpJzKioqTc0Nd5I44mqsm2qNnWCGCoarC1Af9rYp5pysU60v4y0lad8pgtWPHHWQowY5apSjmgGl_9Bd8r1On8eh6gDlYThsbFLbuE9hePEY9Q3wtXjW
CitedBy_id crossref_primary_10_1007_s13369_024_09238_5
crossref_primary_10_1002_adts_202300545
crossref_primary_10_1007_s10462_024_10790_7
crossref_primary_10_3390_rs14020347
crossref_primary_10_1007_s41066_023_00390_1
crossref_primary_10_1002_for_2919
crossref_primary_10_1016_j_seares_2025_102613
crossref_primary_10_1007_s10668_024_05075_6
crossref_primary_10_1007_s41066_023_00389_8
crossref_primary_10_1109_ACCESS_2025_3535667
crossref_primary_10_1007_s41066_023_00368_z
Cites_doi 10.1016/j.engappai.2018.04.017
10.1007/s11063-012-9244-y
10.1515/jaiscr-2016-0001
10.1007/s11063-017-9686-3
10.1007/s41066-018-00144-4
10.1207/s15516709cog1402_1
10.1007/s41066-018-00143-5
10.1016/j.knosys.2015.12.022
10.1007/s11063-014-9342-0
10.1007/s41066-019-00168-4
10.1016/j.dss.2012.12.006
10.1007/s10489-015-0647-0
10.1016/j.asoc.2006.01.003
10.1007/s00521-015-1908-x
10.1016/j.asej.2014.12.013
10.1016/j.eswa.2008.01.061
10.1111/coin.12272
10.1007/s41066-021-00274-2
10.1016/j.aci.2019.04.001
10.1109/ICCICCT.2014.6993082
10.1080/02664763.2020.1869702
10.1016/j.asoc.2021.107611
10.1109/ICNC.2008.896
10.1109/IJCNN.1991.155142
10.1007/s10614-020-10086-2
10.1007/s11042-020-10304-x
10.1007/s41066-022-00324-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
DBID AAYXX
CITATION
DOI 10.1007/s41066-021-00297-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2364-4974
EndPage 820
ExternalDocumentID 10_1007_s41066_021_00297_9
GroupedDBID -EM
0R~
203
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAZMS
ABAKF
ABBTF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
AVWKF
AXYYD
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
H13
HG6
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABDBE
ABFSG
ABJCF
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c291t-571154842b8d7fb1ce5284e2ebee2375526327b85b5f71f1f80a93d0f64b26403
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000712520000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-4966
IngestDate Tue Nov 18 21:22:34 EST 2025
Sat Nov 29 06:38:39 EST 2025
Fri Feb 21 02:44:44 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Sine cosine algorithm
Pi-Sigma artificial neural networks
Forecasting
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-571154842b8d7fb1ce5284e2ebee2375526327b85b5f71f1f80a93d0f64b26403
PageCount 8
ParticipantIDs crossref_citationtrail_10_1007_s41066_021_00297_9
crossref_primary_10_1007_s41066_021_00297_9
springer_journals_10_1007_s41066_021_00297_9
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Granular computing (Internet)
PublicationTitleAbbrev Granul. Comput
PublicationYear 2022
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Nayak, Naik, Behera (CR19) 2015; 6
Aladag, Yolcu, Egrioglu (CR3) 2013; 37
Panigrahi, Bhoi, Karali (CR25) 2013; 3
CR17
Bas (CR4) 2016; 6
Bas, Grosan, Egrioglu, Yolcu (CR7) 2018; 72
Mirjalili (CR18) 2016; 96
Bas, Yolcu, Egrioglu, Cagcag Yolcu, Dalar (CR6) 2016; 6
CR11
Gupta, Kumar (CR16) 2019; 4
CR33
CR31
CR30
Akdeniz, Egrioglu, Bas, Yolcu (CR1) 2018; 8
Gundogdu, Egrioglu, Aladag, Yolcu (CR15) 2015; 27
Akram, Ghazali, Mushtaq (CR2) 2017; 9
Bas, Egrioglu, Aladag, Yolcu (CR5) 2015; 43
Panda, Majhi (CR24) 2020; 36
Egrioglu, Aladag, Yolcu, Bas (CR12) 2015; 41
Rumelhart, Hinton, Williams (CR27) 1986
CR8
CR28
CR26
Yolcu, Egrioglu, Aladag (CR32) 2013; 54
CR23
CR22
CR21
CR20
Elman (CR14) 1990; 14
Egrioglu, Yolcu, Bas (CR13) 2019; 4
Cagcag Yolcu, Bas, Egrioglu, Yolcu (CR10) 2018; 47
Yadav, Kalra, John (CR29) 2007; 7
Zhao, Yang (CR34) 2009; 36
Bisht, Kumar (CR9) 2019; 4
N Panda (297_CR24) 2020; 36
E Egrioglu (297_CR12) 2015; 41
J Nayak (297_CR19) 2015; 6
E Bas (297_CR6) 2016; 6
U Yolcu (297_CR32) 2013; 54
JL Elman (297_CR14) 1990; 14
297_CR22
297_CR23
297_CR20
297_CR21
297_CR8
297_CR17
KK Gupta (297_CR16) 2019; 4
L Zhao (297_CR34) 2009; 36
CH Aladag (297_CR3) 2013; 37
S Mirjalili (297_CR18) 2016; 96
E Bas (297_CR7) 2018; 72
U Akram (297_CR2) 2017; 9
E Bas (297_CR5) 2015; 43
RN Yadav (297_CR29) 2007; 7
297_CR30
297_CR11
297_CR33
K Bisht (297_CR9) 2019; 4
297_CR31
E Egrioglu (297_CR13) 2019; 4
297_CR26
O Cagcag Yolcu (297_CR10) 2018; 47
S Panigrahi (297_CR25) 2013; 3
E Rumelhart (297_CR27) 1986
E Bas (297_CR4) 2016; 6
297_CR28
O Gundogdu (297_CR15) 2015; 27
E Akdeniz (297_CR1) 2018; 8
References_xml – volume: 72
  start-page: 350
  year: 2018
  end-page: 356
  ident: CR7
  article-title: High order fuzzy time series method based on pi-sigma neural network
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.017
– ident: CR22
– volume: 37
  start-page: 251
  issue: 3
  year: 2013
  end-page: 262
  ident: CR3
  article-title: A new multiplicative seasonal neural network model based on particle swarm optimization
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-012-9244-y
– volume: 6
  start-page: 5
  issue: 1
  year: 2016
  end-page: 11
  ident: CR4
  article-title: The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2016-0001
– volume: 6
  start-page: 74
  issue: 3
  year: 2016
  end-page: 77
  ident: CR6
  article-title: Single multiplicative neuron model artificial neuron network trained by bat algorithm for time series forecasting
  publication-title: Am J Intell Syst
– volume: 47
  start-page: 1133
  year: 2018
  end-page: 1147
  ident: CR10
  article-title: Single multiplicative neuron model artificial neural network with autoregressive coefficient for time series modelling
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9686-3
– ident: CR30
– volume: 4
  start-page: 655
  issue: 4
  year: 2019
  end-page: 669
  ident: CR9
  article-title: Hesitant fuzzy set based computational method for financial time series forecasting
  publication-title: Granul Comput
  doi: 10.1007/s41066-018-00144-4
– ident: CR33
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  end-page: 211
  ident: CR14
  article-title: Finding structure in time
  publication-title: Cogn Sci
  doi: 10.1207/s15516709cog1402_1
– volume: 8
  start-page: 121
  year: 2018
  end-page: 132
  ident: CR1
  article-title: An ARMA type Pi-Sigma artificial neural network for nonlinear time series forecasting
  publication-title: J Artif Intell Soft Comput
– ident: CR8
– volume: 4
  start-page: 639
  issue: 4
  year: 2019
  end-page: 654
  ident: CR13
  article-title: Intuitionistic high-order fuzzy time series forecasting method based on pi-sigma artificial neural networks trained by artificial bee colony
  publication-title: Granul Comput
  doi: 10.1007/s41066-018-00143-5
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: CR18
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: CR23
– volume: 41
  start-page: 249
  issue: 2
  year: 2015
  end-page: 258
  ident: CR12
  article-title: Recurrent multiplicative neuron model artificial neural network for non-linear time series forecasting
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-014-9342-0
– volume: 4
  start-page: 699
  issue: 4
  year: 2019
  end-page: 713
  ident: CR16
  article-title: A novel high-order fuzzy time series forecasting method based on probabilistic fuzzy sets
  publication-title: Granul Comput
  doi: 10.1007/s41066-019-00168-4
– ident: CR21
– volume: 54
  start-page: 1340
  year: 2013
  end-page: 2134
  ident: CR32
  article-title: A new linear & nonlinear artificial neural network model for time series forecasting
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2012.12.006
– volume: 43
  start-page: 343
  issue: 2
  year: 2015
  end-page: 355
  ident: CR5
  article-title: Fuzzy-time-series network used to forecast linear and nonlinear time series
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0647-0
– volume: 7
  start-page: 1157
  year: 2007
  end-page: 1163
  ident: CR29
  article-title: Time series prediction with single multiplicative neuron model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2006.01.003
– volume: 3
  start-page: 133
  issue: 5
  year: 2013
  end-page: 136
  ident: CR25
  article-title: A modified differential evolution algorithm trained pi-sigma neural network for pattern classification
  publication-title: Int J Soft Comput Eng
– ident: CR17
– volume: 27
  start-page: 927
  issue: 4
  year: 2015
  end-page: 935
  ident: CR15
  article-title: Multiplicative neuron model artificial neural network based on gauss activation function
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1908-x
– ident: CR31
– ident: CR11
– volume: 9
  start-page: 57
  issue: 3–3
  year: 2017
  end-page: 62
  ident: CR2
  article-title: A comprehensive survey on Pi-Sigma neural network for time series prediction
  publication-title: J Telecommun Electron Comput Eng
– volume: 6
  start-page: 1069
  issue: 3
  year: 2015
  end-page: 1091
  ident: CR19
  article-title: A novel chemical reaction optimization based higher order neural network (CRO-HONN) for nonlinear classification
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2014.12.013
– volume: 36
  start-page: 2805
  year: 2009
  end-page: 2812
  ident: CR34
  article-title: PSO-based single multiplicative neuron model for time series prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.061
– volume: 36
  start-page: 320
  issue: 1
  year: 2020
  end-page: 350
  ident: CR24
  article-title: Improved spotted hyena optimizer with space transformational search for training pi-sigma higher order neural network
  publication-title: Comput Intell
  doi: 10.1111/coin.12272
– ident: CR28
– ident: CR26
– ident: CR20
– start-page: 318
  year: 1986
  end-page: 362
  ident: CR27
  publication-title: Learning internal representations by error propagation, Chapter 8
– volume: 9
  start-page: 57
  issue: 3–3
  year: 2017
  ident: 297_CR2
  publication-title: J Telecommun Electron Comput Eng
– ident: 297_CR8
  doi: 10.1007/s41066-021-00274-2
– ident: 297_CR11
  doi: 10.1016/j.aci.2019.04.001
– ident: 297_CR21
– volume: 7
  start-page: 1157
  year: 2007
  ident: 297_CR29
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2006.01.003
– ident: 297_CR20
  doi: 10.1109/ICCICCT.2014.6993082
– volume: 4
  start-page: 639
  issue: 4
  year: 2019
  ident: 297_CR13
  publication-title: Granul Comput
  doi: 10.1007/s41066-018-00143-5
– volume: 37
  start-page: 251
  issue: 3
  year: 2013
  ident: 297_CR3
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-012-9244-y
– volume: 36
  start-page: 2805
  year: 2009
  ident: 297_CR34
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.01.061
– volume: 4
  start-page: 699
  issue: 4
  year: 2019
  ident: 297_CR16
  publication-title: Granul Comput
  doi: 10.1007/s41066-019-00168-4
– volume: 47
  start-page: 1133
  year: 2018
  ident: 297_CR10
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9686-3
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 297_CR14
  publication-title: Cogn Sci
  doi: 10.1207/s15516709cog1402_1
– volume: 4
  start-page: 655
  issue: 4
  year: 2019
  ident: 297_CR9
  publication-title: Granul Comput
  doi: 10.1007/s41066-018-00144-4
– start-page: 318
  volume-title: Learning internal representations by error propagation, Chapter 8
  year: 1986
  ident: 297_CR27
– volume: 6
  start-page: 5
  issue: 1
  year: 2016
  ident: 297_CR4
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2016-0001
– ident: 297_CR30
  doi: 10.1080/02664763.2020.1869702
– ident: 297_CR26
  doi: 10.1016/j.asoc.2021.107611
– ident: 297_CR22
  doi: 10.1109/ICNC.2008.896
– volume: 54
  start-page: 1340
  year: 2013
  ident: 297_CR32
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2012.12.006
– ident: 297_CR33
– volume: 96
  start-page: 120
  year: 2016
  ident: 297_CR18
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: 297_CR28
  doi: 10.1109/IJCNN.1991.155142
– ident: 297_CR31
  doi: 10.1007/s10614-020-10086-2
– volume: 8
  start-page: 121
  year: 2018
  ident: 297_CR1
  publication-title: J Artif Intell Soft Comput
– volume: 72
  start-page: 350
  year: 2018
  ident: 297_CR7
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.017
– volume: 41
  start-page: 249
  issue: 2
  year: 2015
  ident: 297_CR12
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-014-9342-0
– ident: 297_CR23
  doi: 10.1007/s11042-020-10304-x
– volume: 6
  start-page: 74
  issue: 3
  year: 2016
  ident: 297_CR6
  publication-title: Am J Intell Syst
– volume: 43
  start-page: 343
  issue: 2
  year: 2015
  ident: 297_CR5
  publication-title: Appl Intell
  doi: 10.1007/s10489-015-0647-0
– volume: 6
  start-page: 1069
  issue: 3
  year: 2015
  ident: 297_CR19
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2014.12.013
– volume: 36
  start-page: 320
  issue: 1
  year: 2020
  ident: 297_CR24
  publication-title: Comput Intell
  doi: 10.1111/coin.12272
– ident: 297_CR17
  doi: 10.1007/s41066-022-00324-3
– volume: 3
  start-page: 133
  issue: 5
  year: 2013
  ident: 297_CR25
  publication-title: Int J Soft Comput Eng
– volume: 27
  start-page: 927
  issue: 4
  year: 2015
  ident: 297_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1908-x
SSID ssj0002710266
ssib031263429
Score 2.2631972
Snippet Pi-Sigma artificial neural network, which is a special artificial neural network model, is an artificial neural network that can be thought as a combination of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 813
SubjectTerms Artificial Intelligence
Computational Intelligence
Engineering
Original Paper
Title A Pi-Sigma artificial neural network based on sine cosine optimization algorithm
URI https://link.springer.com/article/10.1007/s41066-021-00297-9
Volume 7
WOSCitedRecordID wos000712520000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 2364-4974
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710266
  issn: 2364-4966
  databaseCode: RSV
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejB6VScX-TgTQNNmzTtcYjD0xhOZbeSr87J1spW_ftN0nQ4kIGeAiUJ5X39EvLe7wFww2PFZEoZYibUIZILjARmGoWhJBLLCMd54JpNsMEgGY_ToS8KWzbZ7s2TpIvUq2I3Ym4vNmHWXH9txyWUboMdA3eJdcen0WtjRREO44h40H93T2sGROO6y1xMEDEHfF898_u26wi1_jzqUKff_t__HoIDf8qEvdosjsCWLjqg3XRwgN6hO2D_Bx3hMRj24HCKRtPJnENrUTW5BLSUl25wCePQ4p6CZQFtxjyUpRtKE3nmvqQT8tmkXEyrt_kJeOk_PN8_It9xAckwxRWizLLzJCQUiWJGb1JTA186NJrWYcQotezuTCRU0JzhHOdJwNNIBXlMhDlZBdEpaBVloc8ADJgyC7j5qBRJApXk5irGleYsEJQL0QW4kXImPR257Yoxy1ZEyk6AmRFg5gSYpV1wu1rzUZNxbJx91ygm84653DD9_G_TL8BeaCshXF7fJWhVi099BXblVzVdLq6dRX4Dh9PWpg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CuqD06k4f-bBNw00bdq0j0McE-cYbsreSpO0c7KtslX_fpMsHQ5E0KdASUK5u9x3IXffAVwlgWQi8hlmytVhmnGCOWEpdl1BBREeCTLHNJtgnU44GERdWxQ2L7PdyydJ46mXxW5U3V50wqy6_uqOSzhahw2qEEsn8j31Xkor8ogbeNSC_pt5WlMgGiy6zAUUUxXg2-qZn7ddRajV51GDOs3q__53D3ZtlIkaC7PYh7V0WoNq2cEB2QNdg51vdIQH0G2g7gj3RsNJgrRFLcglkKa8NINJGEca9yTKp0hnzCORmyFXnmdiSzpRMh7ms1HxOjmE5-Zd_7aFbccFLNyIFNhnmp0npC4PJVN6E6mv4Ct1laZT12O-r9ndGQ997meMZCQLnSTypJMFlKvIyvGOoDLNp-kxIIdJtSBRH6WkoSPDTF3FEpkmzOF-wnkdSCnlWFg6ct0VYxwviZSNAGMlwNgIMI7qcL1c874g4_h19k2pmNgezPkv00_-Nv0Stlr9x3bcvu88nMK2q6siTI7fGVSK2Ud6DpvisxjNZxfGOr8AoNrZig
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50iuiD06k4f-bBNw1r2rRpH4c6FGUMprK30iTtnGzt2Kp_v0najg1EEJ8C5RLK5ZK7I3ffB3AVeZKJwGWYqasO04QTzAmLsW0LKohwiJdYhmyCdbv-YBD0lrr4TbV79SRZ9DRolKY0b01l0lo0vlGVyejiWZUKa_YlHKzDBtWkQTpf779VFuUQ23NoGQB8mGc25VC9gnHOo5iqYL_spPl52VVvtfpUajxQp_7_f9-D3TL6RO3CXPZhLU4bUK-YHVB50BuwswRTeAC9NuqNcH80nERIW1oBOoE0FKYZTCE50v5QoixFupIeicwMmbqRJmWrJ4rGw2w2yt8nh_DauX-5fcAlEwMWdkBy7DKN2uNTm_uSqf0UsavcWmwrC4hth7muRn1n3He5mzCSkMS3osCRVuJRriIuyzmCWpql8TEgi0k1IVIfpaS-Jf1EpWiRjCNmcTfivAmk0ngoSphyzZYxDhcAy0aBoVJgaBQYBk24XsyZFiAdv0rfVJsUlgd2_ov4yd_EL2Grd9cJnx-7T6ewbetmCVP6dwa1fPYZn8Om-MpH89mFMdRvnFfibg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pi-Sigma+artificial+neural+network+based+on+sine+cosine+optimization+algorithm&rft.jtitle=Granular+computing+%28Internet%29&rft.au=Bas%2C+Eren&rft.au=Egrioglu%2C+Erol&rft.au=Karahasan%2C+Ozlem&rft.date=2022-10-01&rft.pub=Springer+International+Publishing&rft.issn=2364-4966&rft.eissn=2364-4974&rft.volume=7&rft.issue=4&rft.spage=813&rft.epage=820&rft_id=info:doi/10.1007%2Fs41066-021-00297-9&rft.externalDocID=10_1007_s41066_021_00297_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-4966&client=summon