Data-Driven Model Predictive Control With Stability and Robustness Guarantees

We propose a robust data-driven model predictive control (MPC) scheme to control linear time-invariant systems. The scheme uses an implicit model description based on behavioral systems theory and past measured trajectories. In particular, it does not require any prior identification step, but only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 66; H. 4; S. 1702 - 1717
Hauptverfasser: Berberich, Julian, Kohler, Johannes, Muller, Matthias A., Allgower, Frank
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a robust data-driven model predictive control (MPC) scheme to control linear time-invariant systems. The scheme uses an implicit model description based on behavioral systems theory and past measured trajectories. In particular, it does not require any prior identification step, but only an initially measured input-output trajectory as well as an upper bound on the order of the unknown system. First, we prove exponential stability of a nominal data-driven MPC scheme with terminal equality constraints in the case of no measurement noise. For bounded additive output measurement noise, we propose a robust modification of the scheme, including a slack variable with regularization in the cost. We prove that the application of this robust MPC scheme in a multistep fashion leads to practical exponential stability of the closed loop w.r.t. the noise level. The presented results provide the first (theoretical) analysis of closed-loop properties, resulting from a simple, purely data-driven MPC scheme.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2020.3000182