A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network

Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image recons...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on multimedia Vol. 25; pp. 4026 - 4040
Main Authors: Wang, Chuntao, Zhang, Tianjian, Chen, Hao, Huang, Qiong, Ni, Jiangqun, Zhang, Xinpeng
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1520-9210, 1941-0077
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.
AbstractList Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel deep-learning-based approach to encryption-then-lossy-compression (ETC) of color images by incorporating the domain knowledge of the encrypted image reconstruction process. In specific, a simple yet effective uniform down-sampling is utilized for lossy compression of images encrypted with a modulo-256 addition, and the task of image reconstruction from an encrypted down-sampled image is then formulated as a problem of constrained super-resolution (SR) reconstruction. A customized residual dense spatial network (RDSN) is proposed to solve the formulated constrained SR task by taking advantage of spatial attention mechanism (SAM), global skip connection (GSC), and uniform down-sampling constraint (UDC) that is specific to an ETC system. Extensive experimental results show that the proposed ETC scheme achieves significant performance improvement compared with other state-of-the-art ETC methods, indicating the feasibility and effectiveness of the proposed deep-learning based ETC scheme.
Author Wang, Chuntao
Huang, Qiong
Ni, Jiangqun
Zhang, Xinpeng
Chen, Hao
Zhang, Tianjian
Author_xml – sequence: 1
  givenname: Chuntao
  orcidid: 0000-0002-5482-1766
  surname: Wang
  fullname: Wang, Chuntao
  email: wangct@scau.edu.cn
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 2
  givenname: Tianjian
  surname: Zhang
  fullname: Zhang, Tianjian
  email: 1029279754@qq.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 3
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  email: 707347865@qq.com
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 4
  givenname: Qiong
  orcidid: 0000-0002-7666-8985
  surname: Huang
  fullname: Huang, Qiong
  email: csqhuang-c@my.cityu.edu.hk
  organization: College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
– sequence: 5
  givenname: Jiangqun
  orcidid: 0000-0002-7520-9031
  surname: Ni
  fullname: Ni, Jiangqun
  email: issjqni@mail.sysu.edu.cn
  organization: School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
– sequence: 6
  givenname: Xinpeng
  orcidid: 0000-0002-0212-3501
  surname: Zhang
  fullname: Zhang, Xinpeng
  email: zhangxinpeng@fudan.edu.cn
  organization: School of Computer Science, Fudan University, Shanghai, China
BookMark eNp9kEtPAjEUhRuDiYDuTdw0cT3Ydh6dLsmISgKYCKwn87gDxZl2bAcN_npLIC5cuLqPnHNP7jdAPaUVIHRLyYhSIh5W8_mIEcZGPuVuFheoT0VAPUI477k-ZMQTjJIrNLB2RwgNQsL7qB3jhf6EGk9UYQ5tJ7XyVltQ3kxbe_AS3bQGrHVrvCy20ADWFU50rQ2eNtkGLF5bqTY42dtON_IbSvwGVpb7rMaPoCzgZZt10k0L6L60eb9Gl1VWW7g51yFaP01WyYs3e32eJuOZVzBBOy8MRZyXeViWgV8x4H7IK5FzISq_zCMqQOSlYOCXELLCCaoiAshFnjMCgsbUH6L7093W6I892C7d6b1RLjJlccSiIIpI7FTkpCqM-9dAlbZGNpk5pJSkR66p45oeuaZnrs4S_bEUssuO4DqTyfo_493JKAHgN0fwKPQ58X8APOqIoQ
CODEN ITMUF8
CitedBy_id crossref_primary_10_1016_j_compeleceng_2024_109236
crossref_primary_10_1145_3712601
crossref_primary_10_1016_j_eswa_2024_124913
crossref_primary_10_1109_TCSVT_2023_3332228
Cites_doi 10.1109/CVPR.2016.207
10.1007/s11042-013-1392-1
10.1109/TSP.2004.833860
10.1109/IIH-MSP.2015.22
10.1109/CVPR.2017.298
10.1109/TIFS.2008.2007244
10.1109/TIFS.2017.2784379
10.1109/TIFS.2013.2291625
10.1109/CVPR.2018.00179
10.1109/TMM.2017.2711263
10.1109/TCSVT.2018.2878026
10.1109/ICCT.2018.8599926
10.1109/CVPR46437.2021.00352
10.1109/ICCV.2017.486
10.1109/TIP.2009.2038773
10.1109/TMM.2018.2863602
10.1109/CVPR.2016.182
10.1109/CVPRW.2018.00113
10.1109/TPAMI.2015.2439281
10.1109/TMM.2021.3065731
10.1109/TIFS.2014.2352455
10.1016/j.image.2015.09.009
10.1109/TMM.2020.2999182
10.1109/CVPRW.2017.151
10.1186/1687-5281-2013-32
10.1109/TMM.2014.2315974
10.1109/CVPR.2017.618
10.1109/CVPR.2019.01132
10.1109/TENCON.2009.5395999
10.1109/TIP.2012.2187671
10.1109/CVPR.2018.00178
10.1109/CVPR.2017.243
10.1109/IIHMSP.2011.12
10.1109/TMM.2021.3118282
10.1109/ICCVW54120.2021.00210
10.1109/ICASSP.2014.6855035
10.1016/j.jvcir.2018.01.007
10.1109/TCSVT.2019.2915238
10.1109/CVPR.2018.00329
10.1109/CVPRW.2018.00131
10.1109/TIP.2019.2938347
10.1007/978-3-319-46475-6_25
10.1007/978-3-319-24574-4_28
10.1109/TMM.2021.3078615
10.1109/CVPR.2018.00262
10.1109/CVPR.2017.19
10.1007/11909033_13
10.1109/TPAMI.2020.3021088
10.1109/TPAMI.2020.2982166
10.1109/TIT.2006.871582
10.1109/TIFS.2010.2099114
10.1109/ICCV.2017.514
10.1109/TPAMI.2018.2865304
10.32604/cmc.2018.03675
10.1109/TMM.2020.3008041
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TMM.2022.3171099
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0077
EndPage 4040
ExternalDocumentID 10_1109_TMM_2022_3171099
9765370
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172165; 61672242; 61702199; 61872152; U1936212; U1736215; 61772573; U1936214
  funderid: 10.13039/501100001809
– fundername: Guangdong Major Project of Basic and Applied Basic Research
  grantid: 2019B030302008
– fundername: Science and Technology Program of Guangzhou
  grantid: 201902010081
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515010325
  funderid: 10.13039/501100003453
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
VH1
ZY4
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001144015500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-9210
IngestDate Mon Jun 30 02:38:53 EDT 2025
Sat Nov 29 03:10:09 EST 2025
Tue Nov 18 22:11:18 EST 2025
Wed Aug 27 02:50:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5598bdb5dd43f2e7357f9b799f3db619e9bd92e3de52cf2efc6eeb9bb20e91813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5482-1766
0000-0002-7666-8985
0000-0002-0212-3501
0000-0002-7520-9031
PQID 2862646608
PQPubID 75737
PageCount 15
ParticipantIDs crossref_primary_10_1109_TMM_2022_3171099
ieee_primary_9765370
proquest_journals_2862646608
crossref_citationtrail_10_1109_TMM_2022_3171099
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on multimedia
PublicationTitleAbbrev TMM
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
zhao (ref47) 2018
ref8
ref7
ref9
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
lazzeretti (ref3) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
kumar (ref4) 0
song (ref12) 0
References_xml – ident: ref32
  doi: 10.1109/CVPR.2016.207
– ident: ref16
  doi: 10.1007/s11042-013-1392-1
– ident: ref1
  doi: 10.1109/TSP.2004.833860
– ident: ref19
  doi: 10.1109/IIH-MSP.2015.22
– ident: ref29
  doi: 10.1109/CVPR.2017.298
– ident: ref2
  doi: 10.1109/TIFS.2008.2007244
– ident: ref7
  doi: 10.1109/TIFS.2017.2784379
– ident: ref6
  doi: 10.1109/TIFS.2013.2291625
– ident: ref43
  doi: 10.1109/CVPR.2018.00179
– ident: ref36
  doi: 10.1109/TMM.2017.2711263
– ident: ref22
  doi: 10.1109/TCSVT.2018.2878026
– ident: ref13
  doi: 10.1109/ICCT.2018.8599926
– ident: ref55
  doi: 10.1109/CVPR46437.2021.00352
– ident: ref28
  doi: 10.1109/ICCV.2017.486
– ident: ref5
  doi: 10.1109/TIP.2009.2038773
– ident: ref30
  doi: 10.1109/TMM.2018.2863602
– ident: ref27
  doi: 10.1109/CVPR.2016.182
– ident: ref48
  doi: 10.1109/CVPRW.2018.00113
– ident: ref26
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref50
  doi: 10.1109/TMM.2021.3065731
– ident: ref24
  doi: 10.1109/TIFS.2014.2352455
– ident: ref20
  doi: 10.1016/j.image.2015.09.009
– ident: ref37
  doi: 10.1109/TMM.2020.2999182
– ident: ref34
  doi: 10.1109/CVPRW.2017.151
– ident: ref23
  doi: 10.1186/1687-5281-2013-32
– ident: ref17
  doi: 10.1109/TMM.2014.2315974
– ident: ref39
  doi: 10.1109/CVPR.2017.618
– ident: ref58
  doi: 10.1109/CVPR.2019.01132
– start-page: 653
  year: 0
  ident: ref12
  article-title: Secure and effective image storage for cloud based e-healthcare systems
  publication-title: Proc IEEE Glob Commun Conf
– ident: ref10
  doi: 10.1109/TENCON.2009.5395999
– ident: ref15
  doi: 10.1109/TIP.2012.2187671
– ident: ref35
  doi: 10.1109/CVPR.2018.00178
– ident: ref44
  doi: 10.1109/CVPR.2017.243
– ident: ref11
  doi: 10.1109/IIHMSP.2011.12
– ident: ref42
  doi: 10.1109/TMM.2021.3118282
– ident: ref56
  doi: 10.1109/ICCVW54120.2021.00210
– ident: ref18
  doi: 10.1109/ICASSP.2014.6855035
– ident: ref21
  doi: 10.1016/j.jvcir.2018.01.007
– ident: ref57
  doi: 10.1109/TCSVT.2019.2915238
– ident: ref46
  doi: 10.1109/CVPR.2018.00329
– ident: ref41
  doi: 10.1109/CVPRW.2018.00131
– ident: ref49
  doi: 10.1109/TIP.2019.2938347
– start-page: 1
  year: 0
  ident: ref3
  article-title: Lossless compression of encrypted grey-level and color images
  publication-title: Proc 16th Eur Signal Process Conf
– ident: ref31
  doi: 10.1007/978-3-319-46475-6_25
– ident: ref53
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref45
  doi: 10.1109/TMM.2021.3078615
– ident: ref54
  doi: 10.1109/CVPR.2018.00262
– year: 2018
  ident: ref47
  article-title: Unsupervised degradation learning for single image super-resolution
– start-page: 760
  year: 0
  ident: ref4
  article-title: Distributed source coding based encryption and lossless compression of gray scale and color images
  publication-title: Proc IEEE 10th Workshop Multimedia Signal Process
– ident: ref33
  doi: 10.1109/CVPR.2017.19
– ident: ref9
  doi: 10.1007/11909033_13
– ident: ref59
  doi: 10.1109/TPAMI.2020.3021088
– ident: ref52
  doi: 10.1109/TPAMI.2020.2982166
– ident: ref25
  doi: 10.1109/TIT.2006.871582
– ident: ref14
  doi: 10.1109/TIFS.2010.2099114
– ident: ref51
  doi: 10.1109/ICCV.2017.514
– ident: ref40
  doi: 10.1109/TPAMI.2018.2865304
– ident: ref8
  doi: 10.32604/cmc.2018.03675
– ident: ref38
  doi: 10.1109/TMM.2020.3008041
SSID ssj0014507
Score 2.4173992
Snippet Nowadays it has still remained as a big challenge to efficiently compress color images in the encrypted domain. In this paper we present a novel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4026
SubjectTerms Cloud computing
Color
Color imagery
Constraints
Cryptography
Customization
Deep learning
Encrypted image compression
Encryption
Feature extraction
Image coding
Image compression
Image reconstruction
residual dense network
Sampling
spatial attention mechanism
super-resolution reconstruction
Title A Novel Encryption-Then-Lossy-Compression Scheme of Color Images Using Customized Residual Dense Spatial Network
URI https://ieeexplore.ieee.org/document/9765370
https://www.proquest.com/docview/2862646608
Volume 25
WOSCitedRecordID wos001144015500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014507
  issn: 1520-9210
  databaseCode: RIE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5U9qAH3fWBo67ksBfBOD3pdPfUUUZlBR0WUfHWdJJqFJwemYegv95KumdQlAVvfahqAl9SVV9SD4A_RNqkkS6lQSSp0wRl4TCRaeHioqutqWdG3l5k_X737g7_LcDhvBaGiELyGR35z_CW74Z26q_K2uw6kzhjgr6YZWldqzV_MdBJKI1mdxRJZB4ze5KMsH19eclEUCnmpz7zED-4oDBT5ZMhDt7lbO176_oJq00UKY5r2H_BAlXrsDab0CCaA7sOK-_aDW7A07HoD5_pUZxWdvQSbIXkbVLJC17mi_TqdVZsxX-4pwGJYSl6bB1H4nzAdmcsQoKB6E05Yhw8vJITVzQO1VzihOkwCT_gmDe06NfJ5Ztwc3Z63fsrm4kL0irsTKTv1m6cSZzTcakoi5OsRJMhlrEzTLUIjUNFsaNEWRYobUpk0BgVEXKsEG_BUjWsaBsE44-dUidoVEd3bFGkprDEAYdvWcYqLWjPQMht047cT8V4zAMtiTBn2HIPW97A1oKDucZT3YrjP7IbHqa5XINQC_ZmOOfNWR3nypM6naZRd-drrV1Y9kPm64uXPViajKb0G37Y58nDeLQftuEb22Tb9g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KFdSHVlvFq1Xz4ItgvL1ssnvzWM6WFu8WkVP6tmySWVro7ZX7KNS_3kl271AUwbd9yCyB32Rmfsl8ALwj0jZLdC0tIkmdGZSVRyOzyqfVUDvbzoz8Ps6LYnh5iV924MO2FoaIYvIZfQyf8S3fz906XJX12XWaNGeC_sBorZK2Wmv7ZqBNLI5mh5RIZCazeZRMsD-dTJgKKsUMNeQe4m9OKE5V-cMUR_9ytv9_O3sKe10cKU5a4J_BDjUHsL-Z0SC6I3sAT35pOHgItyeimN_RjTht3OI-WgvJitLIMW_zXgbxNi-24T9c0YzEvBYjto8LcTFjy7MUMcVAjNYcM86uf5AXX2kZ67nEJybEJMKIY1ZpUbTp5c_h29npdHQuu5kL0ikcrGTo1269Nd7rtFaUpyav0eaIdeotky1C61FR6skoxwtqlxFZtFYlhBwtpC9gt5k39BIEawAOam3QqoEeuKrKbOWIQ47QtIxFetDfgFC6riF5mItxU0ZikmDJsJUBtrKDrQfvtxK3bTOOf6w9DDBt13UI9eB4g3PZndZlqQKt01mWDI_-LvUWHp1PJ-NyfFF8fgWPw8j59hrmGHZXizW9hofubnW9XLyJKvkTcaHfPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Encryption-Then-Lossy-Compression+Scheme+of+Color+Images+Using+Customized+Residual+Dense+Spatial+Network&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Wang%2C+Chuntao&rft.au=Zhang%2C+Tianjian&rft.au=Chen%2C+Hao&rft.au=Huang%2C+Qiong&rft.date=2023&rft.issn=1520-9210&rft.eissn=1941-0077&rft.volume=25&rft.spage=4026&rft.epage=4040&rft_id=info:doi/10.1109%2FTMM.2022.3171099&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TMM_2022_3171099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon