Stacked Spatial-Temporal Autoencoder for Quality Prediction in Industrial Processes

Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 19; číslo 8; s. 1 - 9
Hlavní autori: Yan, Feng, Yang, Chunjie, Zhang, Xinmin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this paper, a stacked spatial-temporal autoencoder (S 2 TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial-temporal correlations into consideration. Specifically, in order to effectively model the temporal dependence from nearby times, a temporal autoencoder (TAE) is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a "feature recalibration" block is developed and embedded into the spatial-temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S 2 TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of an SDS desulphurization process and a high-low transformer demonstrate that the S 2 TAE-based soft sensor is effective and feasible.
AbstractList Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this paper, a stacked spatial-temporal autoencoder (S 2 TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial-temporal correlations into consideration. Specifically, in order to effectively model the temporal dependence from nearby times, a temporal autoencoder (TAE) is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a "feature recalibration" block is developed and embedded into the spatial-temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S 2 TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of an SDS desulphurization process and a high-low transformer demonstrate that the S 2 TAE-based soft sensor is effective and feasible.
Nowadays, data-driven soft sensors have become mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this article, a stacked spatial–temporal autoencoder (S2TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial–temporal correlations into consideration. Specifically, to effectively model the temporal dependence from nearby times, a temporal autoencoder is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a “feature recalibration” block is developed and embedded into the spatial–temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S2TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of a sorbent decontamination system (SDS) desulfurization process and a high–low transformer demonstrate that the S2TAE-based soft sensor is effective and feasible.
Author Yan, Feng
Zhang, Xinmin
Yang, Chunjie
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-4601-4593
  surname: Yan
  fullname: Yan, Feng
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Chunjie
  orcidid: 0000-0002-4362-2104
  surname: Yang
  fullname: Yang, Chunjie
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Xinmin
  orcidid: 0000-0002-4761-3969
  surname: Zhang
  fullname: Zhang, Xinmin
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNp9kL1rwzAQxUVJoWnavdDF0NmpPh1rDKEfgUBbks5Glk-g1LFcSR7y31cmoUOHTndw97t3712jSec6QOiO4DkhWD7u1us5xZTOGaW4FIsLNCWSkxxjgSepF4LkjGJ2ha5D2GPMFpjJKdpuo9Jf0GTbXkWr2nwHh9551WbLITrotGvAZ8b57GNQrY3H7N1DY3W0rstsl627ZgjRJzINnIYQINygS6PaALfnOkOfz0-71Wu-eXtZr5abXFNJYi5oXSsg6SnOOQFOsDaNkUWtSs2LsgSjVWOgrikXopSsaHhtGqqNxKVWyrAZejjd7b37HiDEau8G3yXJipZsQbgYDc8QPm1p70LwYKre24Pyx4rgaoyuStFVY3TVObqEFH8QbaMaLUevbPsfeH8CLQD86kiZ_AnBfgDHln6s
CODEN ITIICH
CitedBy_id crossref_primary_10_1002_cjce_25483
crossref_primary_10_1109_TASE_2025_3594118
crossref_primary_10_1109_TNNLS_2024_3453288
crossref_primary_10_1007_s10586_025_05319_8
crossref_primary_10_1016_j_aei_2024_102967
crossref_primary_10_1109_JSEN_2024_3388455
crossref_primary_10_1002_cpe_70143
crossref_primary_10_1109_TCYB_2024_3447108
crossref_primary_10_1016_j_engappai_2025_111104
crossref_primary_10_1109_TII_2024_3475419
crossref_primary_10_1016_j_jprocont_2024_103282
crossref_primary_10_1109_TIM_2024_3488152
crossref_primary_10_1088_1361_6501_ad7a14
crossref_primary_10_1109_TII_2024_3413313
crossref_primary_10_1016_j_measurement_2025_117541
crossref_primary_10_1109_TIM_2024_3353844
crossref_primary_10_1109_TASE_2025_3597838
Cites_doi 10.1162/neco.1997.9.8.1735
10.1109/TIE.2016.2622668
10.1016/j.chemolab.2019.103813
10.1109/TII.2019.2902129
10.1109/TIM.2020.3035464
10.3115/v1/d14-1179
10.3115/v1/w14-4012
10.1109/TCYB.2020.3010331
10.1109/TIE.2017.2733448
10.1016/j.knosys.2019.105161
10.1109/TIE.2022.3151960
10.1021/acs.iecr.0c03932
10.1038/nature14539
10.1016/j.neucom.2018.11.107
10.1109/CVPR.2018.00745
10.1162/neco.2006.18.7.1527
10.1016/j.jprocont.2021.09.014
10.1016/j.compchemeng.2021.107587
10.1016/j.jprocont.2014.01.012
10.1088/1361-6501/aba6b9
10.1109/TNNLS.2020.3015929
10.1109/TIM.2021.3107599
10.1109/TII.2018.2809730
10.1126/science.1127647
10.1109/CVPR.2016.90
10.1109/TII.2020.2990975
10.1109/TII.2021.3053128
10.1002/cjce.23665
10.1109/CVPR.2015.7298965
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2022.3220857
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 9
ExternalDocumentID 10_1109_TII_2022_3220857
9944155
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61933015
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
AARMG
ABAZT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-52bbae13204441e410cfdf96ba8c4688efcadfebb24558936d4bfd2cf908caaf3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030673600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:08:17 EDT 2025
Sat Nov 29 04:17:05 EST 2025
Tue Nov 18 21:15:22 EST 2025
Tue Nov 25 14:44:25 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-52bbae13204441e410cfdf96ba8c4688efcadfebb24558936d4bfd2cf908caaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4362-2104
0000-0002-4601-4593
0000-0002-4761-3969
PQID 2837145320
PQPubID 85507
PageCount 9
ParticipantIDs ieee_primary_9944155
proquest_journals_2837145320
crossref_primary_10_1109_TII_2022_3220857
crossref_citationtrail_10_1109_TII_2022_3220857
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Vincent (ref13) 2010; 11
References_xml – ident: ref16
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref18
  doi: 10.1109/TIE.2016.2622668
– ident: ref20
  doi: 10.1016/j.chemolab.2019.103813
– ident: ref26
  doi: 10.1109/TII.2019.2902129
– ident: ref8
  doi: 10.1109/TIM.2020.3035464
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref13
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.3115/v1/d14-1179
– ident: ref25
  doi: 10.3115/v1/w14-4012
– ident: ref24
  doi: 10.1109/TCYB.2020.3010331
– ident: ref19
  doi: 10.1109/TIE.2017.2733448
– ident: ref28
  doi: 10.1016/j.knosys.2019.105161
– ident: ref2
  doi: 10.1109/TIE.2022.3151960
– ident: ref5
  doi: 10.1021/acs.iecr.0c03932
– ident: ref10
  doi: 10.1038/nature14539
– ident: ref22
  doi: 10.1016/j.neucom.2018.11.107
– ident: ref29
  doi: 10.1109/CVPR.2018.00745
– ident: ref14
  doi: 10.1162/neco.2006.18.7.1527
– ident: ref4
  doi: 10.1016/j.jprocont.2021.09.014
– ident: ref6
  doi: 10.1016/j.compchemeng.2021.107587
– ident: ref17
  doi: 10.1016/j.jprocont.2014.01.012
– ident: ref23
  doi: 10.1088/1361-6501/aba6b9
– ident: ref1
  doi: 10.1109/TNNLS.2020.3015929
– ident: ref7
  doi: 10.1109/TIM.2021.3107599
– ident: ref21
  doi: 10.1109/TII.2018.2809730
– ident: ref9
  doi: 10.1126/science.1127647
– ident: ref11
  doi: 10.1109/CVPR.2016.90
– ident: ref3
  doi: 10.1109/TII.2020.2990975
– ident: ref27
  doi: 10.1109/TII.2021.3053128
– ident: ref30
  doi: 10.1002/cjce.23665
– ident: ref15
  doi: 10.1109/CVPR.2015.7298965
SSID ssj0037039
Score 2.4691553
Snippet Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the...
Nowadays, data-driven soft sensors have become mainstream for the key performance indicators prediction, which guarantees the safety and stability of the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Correlation
Decontamination
Feature extraction
Key performance indicator
Mathematical models
Memory modules
Representation learning
Soft sensor
Soft sensors
Sorbents
spatial-temporal autoencoder
temporal autoencoder
Title Stacked Spatial-Temporal Autoencoder for Quality Prediction in Industrial Processes
URI https://ieeexplore.ieee.org/document/9944155
https://www.proquest.com/docview/2837145320
Volume 19
WOSCitedRecordID wos001030673600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDF8Fts9nsI0cRi72UghV6W_KYQEFa6UPw35vsoyqK4C2HDISZSTKTyXwfwHViqMoo50GMLA14QqNAKCsD6YZaJigMZgXZRDoaZdOpGDfgdtsLg4jF5zPs-WFRyzcLvfFPZX0hfPQfN6GZpmnZq1WfupHzXFFgo8ZhEDEa1SVJKvqT4dAlgoz1nPN6QPdvV1DBqfLjIC5ul8HB_9Z1CPtVFEnuSrMfQQPnx7D3BVuwDU8ujHQ71BBPOuycLJiUIFROarNeePhKg0viQlZSwmi8k_HSF228ochsTj45PUjVTICrE3gePEzuH4OKQSHQTIRrl2UqJdF3SXO3QuQh1dZYkSiZaZ5kGVotjUWlGI9jF7kkhitrmLaCZlpKG51Ca76Y4xkQisjjSCfK6pDbjEkpfeVXGRdQCM5sB_q1UnNdwYt7louXvEgzqMidGXJvhrwyQwduthKvJbTGH3PbXu3beZXGO9Ct7ZZXe2-VezyfkHvCi_PfpS5g15PGl9_4utBaLzd4CTv6bT1bLa8Kt_oAxobLyg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDb7E-c_AiuG02m91ujiKWFmsRrNDbkscECtJKH4L_3mR3WxVF8JZDBsLMJJnJZL4P4DIxVKWU8yBG1gx4QqNAKCsD6YZaJigMpjnZRLPXSwcD8ViB62UvDCLmn8-w7od5Ld-M9dw_lTWE8NF_vAKrMecsLLq1Fudu5HxX5OiocRhEjEaLoiQVjX6n41JBxurOfT2k-7dLKGdV-XEU5_dLa_t_K9uBrTKOJDeF4XehgqM92PyCLrgPTy6QdHvUEE877Nws6BcwVE5qPht7AEuDE-KCVlIAabyTx4kv23hTkeGIfLJ6kLKdAKcH8Ny669-2g5JDIdBMhDOXZyol0fdJc7dC5CHV1liRKJlqnqQpWi2NRaUYj2MXuySGK2uYtoKmWkobHUJ1NB7hERCKyONIJ8rqkNuUSSl97VcZF1IIzmwNGgulZroEGPc8Fy9ZnmhQkTkzZN4MWWmGGlwtJV4LcI0_5u57tS_nlRqvwenCblm5-6aZR_QJuae8OP5d6gLW2_2Hbtbt9O5PYMNTyBef-k6hOpvM8QzW9NtsOJ2c5y72AYhmzxE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Spatial-Temporal+Autoencoder+for+Quality+Prediction+in+Industrial+Processes&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yan%2C+Feng&rft.au=Yang%2C+Chunjie&rft.au=Zhang%2C+Xinmin&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTII.2022.3220857&rft.externalDocID=9944155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon