Stacked Spatial-Temporal Autoencoder for Quality Prediction in Industrial Processes
Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervi...
Uložené v:
| Vydané v: | IEEE transactions on industrial informatics Ročník 19; číslo 8; s. 1 - 9 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1551-3203, 1941-0050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this paper, a stacked spatial-temporal autoencoder (S 2 TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial-temporal correlations into consideration. Specifically, in order to effectively model the temporal dependence from nearby times, a temporal autoencoder (TAE) is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a "feature recalibration" block is developed and embedded into the spatial-temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S 2 TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of an SDS desulphurization process and a high-low transformer demonstrate that the S 2 TAE-based soft sensor is effective and feasible. |
|---|---|
| AbstractList | Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this paper, a stacked spatial-temporal autoencoder (S 2 TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial-temporal correlations into consideration. Specifically, in order to effectively model the temporal dependence from nearby times, a temporal autoencoder (TAE) is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a "feature recalibration" block is developed and embedded into the spatial-temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S 2 TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of an SDS desulphurization process and a high-low transformer demonstrate that the S 2 TAE-based soft sensor is effective and feasible. Nowadays, data-driven soft sensors have become mainstream for the key performance indicators prediction, which guarantees the safety and stability of the industrial process. The typical autoencoder (AE) has been widely used to extract potential features through unsupervised pretraining and supervised fine-tuning. However, most existing studies fail to consider both the time-varying features of the process and the differences in the contributions of the hidden features to the target variable. Therefore, in this article, a stacked spatial–temporal autoencoder (S2TAE) is proposed to enhance the representation learning capability for soft sensor modeling by taking the spatial–temporal correlations into consideration. Specifically, to effectively model the temporal dependence from nearby times, a temporal autoencoder is proposed, in which a memory module is devised and integrated to learn valuable historical information. Moreover, a “feature recalibration” block is developed and embedded into the spatial–temporal autoencoder (STAE) to selectively capture more informative features and suppress the less useful ones in a supervised way. Then, multiple STAEs are stacked to construct the S2TAE network to extract more robust high-level features. Finally, the experimental results on two real-world datasets of a sorbent decontamination system (SDS) desulfurization process and a high–low transformer demonstrate that the S2TAE-based soft sensor is effective and feasible. |
| Author | Yan, Feng Zhang, Xinmin Yang, Chunjie |
| Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-4601-4593 surname: Yan fullname: Yan, Feng organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 2 givenname: Chunjie orcidid: 0000-0002-4362-2104 surname: Yang fullname: Yang, Chunjie organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China – sequence: 3 givenname: Xinmin orcidid: 0000-0002-4761-3969 surname: Zhang fullname: Zhang, Xinmin organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China |
| BookMark | eNp9kL1rwzAQxUVJoWnavdDF0NmpPh1rDKEfgUBbks5Glk-g1LFcSR7y31cmoUOHTndw97t3712jSec6QOiO4DkhWD7u1us5xZTOGaW4FIsLNCWSkxxjgSepF4LkjGJ2ha5D2GPMFpjJKdpuo9Jf0GTbXkWr2nwHh9551WbLITrotGvAZ8b57GNQrY3H7N1DY3W0rstsl627ZgjRJzINnIYQINygS6PaALfnOkOfz0-71Wu-eXtZr5abXFNJYi5oXSsg6SnOOQFOsDaNkUWtSs2LsgSjVWOgrikXopSsaHhtGqqNxKVWyrAZejjd7b37HiDEau8G3yXJipZsQbgYDc8QPm1p70LwYKre24Pyx4rgaoyuStFVY3TVObqEFH8QbaMaLUevbPsfeH8CLQD86kiZ_AnBfgDHln6s |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1002_cjce_25483 crossref_primary_10_1109_TASE_2025_3594118 crossref_primary_10_1109_TNNLS_2024_3453288 crossref_primary_10_1007_s10586_025_05319_8 crossref_primary_10_1016_j_aei_2024_102967 crossref_primary_10_1109_JSEN_2024_3388455 crossref_primary_10_1002_cpe_70143 crossref_primary_10_1109_TCYB_2024_3447108 crossref_primary_10_1016_j_engappai_2025_111104 crossref_primary_10_1109_TII_2024_3475419 crossref_primary_10_1016_j_jprocont_2024_103282 crossref_primary_10_1109_TIM_2024_3488152 crossref_primary_10_1088_1361_6501_ad7a14 crossref_primary_10_1109_TII_2024_3413313 crossref_primary_10_1016_j_measurement_2025_117541 crossref_primary_10_1109_TIM_2024_3353844 crossref_primary_10_1109_TASE_2025_3597838 |
| Cites_doi | 10.1162/neco.1997.9.8.1735 10.1109/TIE.2016.2622668 10.1016/j.chemolab.2019.103813 10.1109/TII.2019.2902129 10.1109/TIM.2020.3035464 10.3115/v1/d14-1179 10.3115/v1/w14-4012 10.1109/TCYB.2020.3010331 10.1109/TIE.2017.2733448 10.1016/j.knosys.2019.105161 10.1109/TIE.2022.3151960 10.1021/acs.iecr.0c03932 10.1038/nature14539 10.1016/j.neucom.2018.11.107 10.1109/CVPR.2018.00745 10.1162/neco.2006.18.7.1527 10.1016/j.jprocont.2021.09.014 10.1016/j.compchemeng.2021.107587 10.1016/j.jprocont.2014.01.012 10.1088/1361-6501/aba6b9 10.1109/TNNLS.2020.3015929 10.1109/TIM.2021.3107599 10.1109/TII.2018.2809730 10.1126/science.1127647 10.1109/CVPR.2016.90 10.1109/TII.2020.2990975 10.1109/TII.2021.3053128 10.1002/cjce.23665 10.1109/CVPR.2015.7298965 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2022.3220857 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 9 |
| ExternalDocumentID | 10_1109_TII_2022_3220857 9944155 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61933015 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD AARMG ABAZT JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-52bbae13204441e410cfdf96ba8c4688efcadfebb24558936d4bfd2cf908caaf3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001030673600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1551-3203 |
| IngestDate | Mon Jun 30 10:08:17 EDT 2025 Sat Nov 29 04:17:05 EST 2025 Tue Nov 18 21:15:22 EST 2025 Tue Nov 25 14:44:25 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-52bbae13204441e410cfdf96ba8c4688efcadfebb24558936d4bfd2cf908caaf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4362-2104 0000-0002-4601-4593 0000-0002-4761-3969 |
| PQID | 2837145320 |
| PQPubID | 85507 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_9944155 proquest_journals_2837145320 crossref_primary_10_1109_TII_2022_3220857 crossref_citationtrail_10_1109_TII_2022_3220857 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Vincent (ref13) 2010; 11 |
| References_xml | – ident: ref16 doi: 10.1162/neco.1997.9.8.1735 – ident: ref18 doi: 10.1109/TIE.2016.2622668 – ident: ref20 doi: 10.1016/j.chemolab.2019.103813 – ident: ref26 doi: 10.1109/TII.2019.2902129 – ident: ref8 doi: 10.1109/TIM.2020.3035464 – volume: 11 start-page: 3371 year: 2010 ident: ref13 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: ref12 doi: 10.3115/v1/d14-1179 – ident: ref25 doi: 10.3115/v1/w14-4012 – ident: ref24 doi: 10.1109/TCYB.2020.3010331 – ident: ref19 doi: 10.1109/TIE.2017.2733448 – ident: ref28 doi: 10.1016/j.knosys.2019.105161 – ident: ref2 doi: 10.1109/TIE.2022.3151960 – ident: ref5 doi: 10.1021/acs.iecr.0c03932 – ident: ref10 doi: 10.1038/nature14539 – ident: ref22 doi: 10.1016/j.neucom.2018.11.107 – ident: ref29 doi: 10.1109/CVPR.2018.00745 – ident: ref14 doi: 10.1162/neco.2006.18.7.1527 – ident: ref4 doi: 10.1016/j.jprocont.2021.09.014 – ident: ref6 doi: 10.1016/j.compchemeng.2021.107587 – ident: ref17 doi: 10.1016/j.jprocont.2014.01.012 – ident: ref23 doi: 10.1088/1361-6501/aba6b9 – ident: ref1 doi: 10.1109/TNNLS.2020.3015929 – ident: ref7 doi: 10.1109/TIM.2021.3107599 – ident: ref21 doi: 10.1109/TII.2018.2809730 – ident: ref9 doi: 10.1126/science.1127647 – ident: ref11 doi: 10.1109/CVPR.2016.90 – ident: ref3 doi: 10.1109/TII.2020.2990975 – ident: ref27 doi: 10.1109/TII.2021.3053128 – ident: ref30 doi: 10.1002/cjce.23665 – ident: ref15 doi: 10.1109/CVPR.2015.7298965 |
| SSID | ssj0037039 |
| Score | 2.4691553 |
| Snippet | Nowadays, data-driven soft sensors have become a mainstream for the key performance indicators prediction, which guarantees the safety and stability of the... Nowadays, data-driven soft sensors have become mainstream for the key performance indicators prediction, which guarantees the safety and stability of the... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Correlation Decontamination Feature extraction Key performance indicator Mathematical models Memory modules Representation learning Soft sensor Soft sensors Sorbents spatial-temporal autoencoder temporal autoencoder |
| Title | Stacked Spatial-Temporal Autoencoder for Quality Prediction in Industrial Processes |
| URI | https://ieeexplore.ieee.org/document/9944155 https://www.proquest.com/docview/2837145320 |
| Volume | 19 |
| WOSCitedRecordID | wos001030673600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrZKDF8Fts9nsI0cRi72UghV6W_KYQEFa6UPw35vsoyqK4C2HDISZSTKTyXwfwHViqMoo50GMLA14QqNAKCsD6YZaJigMZgXZRDoaZdOpGDfgdtsLg4jF5zPs-WFRyzcLvfFPZX0hfPQfN6GZpmnZq1WfupHzXFFgo8ZhEDEa1SVJKvqT4dAlgoz1nPN6QPdvV1DBqfLjIC5ul8HB_9Z1CPtVFEnuSrMfQQPnx7D3BVuwDU8ujHQ71BBPOuycLJiUIFROarNeePhKg0viQlZSwmi8k_HSF228ochsTj45PUjVTICrE3gePEzuH4OKQSHQTIRrl2UqJdF3SXO3QuQh1dZYkSiZaZ5kGVotjUWlGI9jF7kkhitrmLaCZlpKG51Ca76Y4xkQisjjSCfK6pDbjEkpfeVXGRdQCM5sB_q1UnNdwYt7louXvEgzqMidGXJvhrwyQwduthKvJbTGH3PbXu3beZXGO9Ct7ZZXe2-VezyfkHvCi_PfpS5g15PGl9_4utBaLzd4CTv6bT1bLa8Kt_oAxobLyg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFdSDb7E-c_AiuG02m91ujiKWFmsRrNDbkscECtJKH4L_3mR3WxVF8JZDBsLMJJnJZL4P4DIxVKWU8yBG1gx4QqNAKCsD6YZaJigMpjnZRLPXSwcD8ViB62UvDCLmn8-w7od5Ld-M9dw_lTWE8NF_vAKrMecsLLq1Fudu5HxX5OiocRhEjEaLoiQVjX6n41JBxurOfT2k-7dLKGdV-XEU5_dLa_t_K9uBrTKOJDeF4XehgqM92PyCLrgPTy6QdHvUEE877Nws6BcwVE5qPht7AEuDE-KCVlIAabyTx4kv23hTkeGIfLJ6kLKdAKcH8Ny669-2g5JDIdBMhDOXZyol0fdJc7dC5CHV1liRKJlqnqQpWi2NRaUYj2MXuySGK2uYtoKmWkobHUJ1NB7hERCKyONIJ8rqkNuUSSl97VcZF1IIzmwNGgulZroEGPc8Fy9ZnmhQkTkzZN4MWWmGGlwtJV4LcI0_5u57tS_nlRqvwenCblm5-6aZR_QJuae8OP5d6gLW2_2Hbtbt9O5PYMNTyBef-k6hOpvM8QzW9NtsOJ2c5y72AYhmzxE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Spatial-Temporal+Autoencoder+for+Quality+Prediction+in+Industrial+Processes&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Yan%2C+Feng&rft.au=Yang%2C+Chunjie&rft.au=Zhang%2C+Xinmin&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=1551-3203&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FTII.2022.3220857&rft.externalDocID=9944155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |