Preserving Data-Privacy With Added Noises: Optimal Estimation and Privacy Analysis

Network systems often rely on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, an eaves...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 64; číslo 8; s. 5677 - 5690
Hlavní autoři: He, Jianping, Cai, Lin, Guan, Xinping
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Network systems often rely on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, an eavesdropping node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of <inline-formula> <tex-math notation="LaTeX">(\epsilon, \delta) </tex-math></inline-formula>-data-privacy, defined as the probability of <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-accurate estimate (the difference of an estimation and the original data is within <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>) is no larger than <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula> (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.
AbstractList Network systems often rely on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, an eavesdropping node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of <inline-formula> <tex-math notation="LaTeX">(\epsilon, \delta) </tex-math></inline-formula>-data-privacy, defined as the probability of <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>-accurate estimate (the difference of an estimation and the original data is within <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula>) is no larger than <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula> (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.
Network systems often rely on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To preserve data privacy, a node may add a random noise to its original data for information exchange at each iteration. Nevertheless, an eavesdropping node can estimate other's original data based on the information it received. The estimation accuracy and data privacy can be measured in terms of (E, δ)-data-privacy, defined as the probability of E-accurate estimate (the difference of an estimation and the original data is within E) is no larger than δ (the disclosure probability). How to optimize the estimation and analyze data privacy is a critical and open issue. In this paper, a theoretical framework is developed to investigate how to optimize the estimation of neighbor's original data using the local information received, named optimal distributed estimation. Then, we study the disclosure probability under the optimal estimation for data privacy analysis. We further apply the developed framework to analyze the data privacy of the privacy-preserving average consensus algorithm and identify the optimal noises for the algorithm.
Author Cai, Lin
Guan, Xinping
He, Jianping
Author_xml – sequence: 1
  givenname: Jianping
  orcidid: 0000-0002-6253-7802
  surname: He
  fullname: He, Jianping
  email: jianpinghe.zju@gmail.com
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Lin
  orcidid: 0000-0002-1093-4865
  surname: Cai
  fullname: Cai, Lin
  email: cai@ece.uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, BC, Canada
– sequence: 3
  givenname: Xinping
  orcidid: 0000-0003-1858-8538
  surname: Guan
  fullname: Guan, Xinping
  email: xpguan@sjtu.edu.cn
  organization: Department of Automation, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kMtPAjEQxhuDiYDeTbw08bzY5z68EUQlIUIMxuOmtLNasu5iW0j47y2CHjx4mszjNzPf10Odpm0AoUtKBpSS4mYxWQwYofmA5YIxRk9Ql0qZJUUqRQd1SWwlhRD5Gep5v4qpkJR10fPcgQe3tc0bvlNBJXNnt0rv8KsN73hoDBj81FoP_hbP1sF-qBqP_T4G2zZYNQb_EMNG1Ttv_Tk6rVTt4eIY--jlfrwYPSbT2cNkNJwmmhU0JJICEKapqExGBANDc81zVsWa0YQyngojsoovJUuV0EwsDQVVFGm6rLjkwPvo-rB37drPDfhQrtqNi0_4ktFMiILmIotT5DClXeu9g6pcu_i925WUlHvnyuhcuXeuPDoXkfQPom341hucsvV_4NUBtADweyfnWZQj-RdW1nxJ
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s12065_019_00309_3
crossref_primary_10_1016_j_sysconle_2023_105608
crossref_primary_10_1109_TSP_2018_2872817
crossref_primary_10_1109_TAC_2023_3269360
crossref_primary_10_1109_TIFS_2021_3096121
crossref_primary_10_1109_TSP_2022_3182590
crossref_primary_10_1109_TVT_2021_3133902
crossref_primary_10_1109_TIE_2022_3231272
crossref_primary_10_1109_TAES_2021_3124866
crossref_primary_10_1109_TVCG_2020_3037670
crossref_primary_10_1155_2021_1181129
crossref_primary_10_1109_TAC_2021_3059427
crossref_primary_10_1109_JIOT_2023_3279440
crossref_primary_10_1109_TAC_2024_3495373
crossref_primary_10_3390_electronics8090966
crossref_primary_10_1109_JSTSP_2023_3347931
crossref_primary_10_1109_TSIPN_2024_3485480
crossref_primary_10_1016_j_automatica_2023_111062
crossref_primary_10_1002_rnc_7906
crossref_primary_10_1109_TCYB_2025_3589627
crossref_primary_10_1109_TIFS_2021_3106161
crossref_primary_10_1016_j_automatica_2022_110527
crossref_primary_10_1109_TAC_2019_2910171
crossref_primary_10_1109_TIT_2024_3370311
crossref_primary_10_1109_TSP_2018_2880722
crossref_primary_10_1109_TDSC_2018_2861403
crossref_primary_10_1109_TCNS_2024_3401270
crossref_primary_10_1109_TCNS_2022_3212016
crossref_primary_10_1016_j_sysconle_2020_104869
crossref_primary_10_1016_j_asoc_2022_109488
crossref_primary_10_1109_TAC_2020_3022856
crossref_primary_10_1016_j_automatica_2023_111150
crossref_primary_10_1109_TNSE_2020_3044590
crossref_primary_10_1109_TSMC_2025_3550524
crossref_primary_10_1109_TSP_2021_3126929
crossref_primary_10_1016_j_automatica_2025_112338
crossref_primary_10_1109_TAC_2024_3383795
crossref_primary_10_1109_TAC_2020_2994030
crossref_primary_10_1109_TDSC_2025_3543205
crossref_primary_10_1109_TSIPN_2023_3322783
crossref_primary_10_1109_TCNS_2023_3298198
crossref_primary_10_1016_j_jfranklin_2021_01_039
crossref_primary_10_1109_TIFS_2025_3593357
crossref_primary_10_1109_TCNS_2024_3354875
crossref_primary_10_1016_j_cnsns_2025_108918
crossref_primary_10_1016_j_jet_2025_105965
crossref_primary_10_1016_j_ins_2020_05_119
crossref_primary_10_1016_j_automatica_2021_110087
crossref_primary_10_1016_j_energy_2025_136627
crossref_primary_10_1109_TSIPN_2021_3062985
crossref_primary_10_1016_j_jfranklin_2022_06_053
crossref_primary_10_1016_j_automatica_2022_110223
crossref_primary_10_1016_j_jfranklin_2025_107836
crossref_primary_10_1016_j_automatica_2020_109116
crossref_primary_10_1016_j_automatica_2021_109732
crossref_primary_10_1109_TNSE_2023_3293106
crossref_primary_10_1109_TSIPN_2018_2866342
crossref_primary_10_1177_01423312251321557
crossref_primary_10_1016_j_ifacol_2020_12_1684
crossref_primary_10_1109_TCNS_2025_3526723
crossref_primary_10_1016_j_automatica_2025_112387
crossref_primary_10_1080_00207721_2024_2343734
crossref_primary_10_1109_JIOT_2022_3182542
Cites_doi 10.1109/TAC.2016.2564339
10.3182/20100913-2-FR-4014.00032
10.1016/j.automatica.2011.06.012
10.1109/TIT.2016.2584610
10.1109/TAC.2013.2283096
10.1145/2381966.2381978
10.1007/978-1-4419-5906-5_752
10.1109/TIT.2015.2504972
10.1109/TAC.2014.2364096
10.1109/TAC.2013.2283742
10.1109/TIT.2015.2504967
10.1016/j.automatica.2017.03.016
10.1145/2684464.2684480
10.1109/ICDM.2003.1250908
10.1137/110837462
10.1109/TAC.2013.2286893
10.1109/TSP.2015.2394507
10.1109/TSG.2015.2513772
10.1109/TAC.2014.2309281
10.1109/TIT.2014.2331272
10.1109/TSP.2009.2024278
10.23919/ECC.2013.6669251
10.1109/JPROC.2006.887293
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2018.2842221
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 5690
ExternalDocumentID 10_1109_TIT_2018_2842221
8370125
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
– fundername: National Natural Science Foundation of China
  grantid: 61773257; 61761136012; 61521063; 61633017
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c291t-51ee02c14fd7042ed18c382f02cdc012364d47f3b526a4c24bd1ea9966bf353e3
IEDL.DBID RIE
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438728100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 15:59:11 EDT 2025
Tue Nov 18 22:11:17 EST 2025
Sat Nov 29 03:31:40 EST 2025
Wed Aug 27 02:48:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-51ee02c14fd7042ed18c382f02cdc012364d47f3b526a4c24bd1ea9966bf353e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1858-8538
0000-0002-1093-4865
0000-0002-6253-7802
PQID 2174491847
PQPubID 36024
PageCount 14
ParticipantIDs proquest_journals_2174491847
ieee_primary_8370125
crossref_primary_10_1109_TIT_2018_2842221
crossref_citationtrail_10_1109_TIT_2018_2842221
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
he (ref24) 2016
ref15
pasqualetti (ref8) 2010
ref14
he (ref6) 0
ref11
xiao (ref10) 2005
ref2
ref1
ref17
ref16
ref19
ref18
he (ref26) 2017
gulisano (ref4) 2016
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref7
ref9
ref3
ref5
References_xml – ident: ref20
  doi: 10.1109/TAC.2016.2564339
– year: 0
  ident: ref6
  article-title: Distributed privacy-preserving data aggregation against dishonest nodes in network systems
  publication-title: IEEE Internet of Things Journal
– start-page: 263
  year: 2010
  ident: ref8
  article-title: Distributed estimation and detection under local information
  publication-title: Proc IFAC
  doi: 10.3182/20100913-2-FR-4014.00032
– year: 2016
  ident: ref24
  publication-title: Differential private noise adding mechanism and its application on consensus
– ident: ref13
  doi: 10.1016/j.automatica.2011.06.012
– ident: ref28
  doi: 10.1109/TIT.2016.2584610
– start-page: 59
  year: 2016
  ident: ref4
  article-title: BES: Differentially private and distributed event aggregation in advanced metering infrastructures
  publication-title: Proc ACM IWCPSS
– ident: ref16
  doi: 10.1109/TAC.2013.2283096
– ident: ref17
  doi: 10.1145/2381966.2381978
– ident: ref21
  doi: 10.1007/978-1-4419-5906-5_752
– ident: ref23
  doi: 10.1109/TIT.2015.2504972
– start-page: 63
  year: 2005
  ident: ref10
  article-title: A scheme for robust distributed sensor fusion based on average consensus
  publication-title: Proc ISIPSN
– ident: ref2
  doi: 10.1109/TAC.2014.2364096
– ident: ref14
  doi: 10.1109/TAC.2013.2283742
– ident: ref22
  doi: 10.1109/TIT.2015.2504967
– ident: ref18
  doi: 10.1016/j.automatica.2017.03.016
– ident: ref5
  doi: 10.1145/2684464.2684480
– ident: ref27
  doi: 10.1109/ICDM.2003.1250908
– ident: ref25
  doi: 10.1137/110837462
– ident: ref15
  doi: 10.1109/TAC.2013.2286893
– ident: ref12
  doi: 10.1109/TSP.2015.2394507
– ident: ref11
  doi: 10.1109/TSG.2015.2513772
– year: 2017
  ident: ref26
  publication-title: Privacy-preserving Average Consensus Privacy Analysis and Optimal Algorithm Design
– ident: ref3
  doi: 10.1109/TAC.2014.2309281
– ident: ref1
  doi: 10.1109/TIT.2014.2331272
– ident: ref9
  doi: 10.1109/TSP.2009.2024278
– ident: ref19
  doi: 10.23919/ECC.2013.6669251
– ident: ref7
  doi: 10.1109/JPROC.2006.887293
SSID ssj0014512
Score 2.5760896
Snippet Network systems often rely on distributed algorithms to achieve a global computation goal with iterative local information exchanges between neighbor nodes. To...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5677
SubjectTerms Algorithms
average consensus
Computer privacy
Data analysis
Data exchange
Data privacy
Distributed algorithm
Distributed algorithms
Distributed databases
distributed estimation
Eavesdropping
Estimation
Iterative methods
Nickel
noise adding mechanism
Optimization
Privacy
Random noise
Random variables
Title Preserving Data-Privacy With Added Noises: Optimal Estimation and Privacy Analysis
URI https://ieeexplore.ieee.org/document/8370125
https://www.proquest.com/docview/2174491847
Volume 64
WOSCitedRecordID wos000438728100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8aAHq61itcoevAjGZrObbtZb8YGCVJGKvYXNPrSgqTRR8N-7m0dRFMFTQthJQr7MTCYz8w3Ages4CAg3ngmN8Sgl0hNOr4gYaOtOfZWERaPwNRuNosmE3zbgaNELo7Uuis_0sdstcvlqJt_cr7K-I2qxDnkJlhhjZa_WImNAQ1wyg2OrwDbmqFOSPu-Pr8auhis6tqbYukP8zQUVM1V-GOLCu1y0_ndf67BWfUWiYQn7BjR02oZWPaEBVQrbhtUvdIMduHP1Fs42pI_oTOTCu51P34X8QA_T_AkNrQlSaDSbZjo7QTfWlLzYS5xnbuvQQyJVqJaouUw24f7ifHx66VUzFTwZcJx7IdbaDySmRjGrr1rhSJIoMPaYkgWfG1WUGZKEwUBQGdBEYS1cUJQYEhJNtqCZzlK9DcgGLomKiGFJpKnihCvBEjEQDCdc-wPehX79mGNZEY67uRfPcRF4-Dy2wMQOmLgCpguHC4nXkmzjj7UdB8RiXYVBF3o1knGljVnswi7KbSzLdn6X2oUVd-6ysK8HzXz-pvdgWb7n02y-X7xon9tYz2I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7qA9SDb7E-9-BFMDab3TRZb0UrFWstUtFb2OxDC5pKEwv-e3fzKIoieEoIO2zIl5nJZGa-ATiyHQceYdrRvtYOpUQ43OoV4U1l3KkrYz9vFO4GvV74-Mj6NTiZ9sIopfLiM3VqT_NcvhyJd_urrGGJWoxDnoE5n1IPF91a05wB9XHBDY6NCpuoo0pKuqwxuBrYKq7w1Bhj4xDxNyeUT1X5YYpz_3K58r87W4Xl8jsStQrg16CmknVYqWY0oFJl12HpC-HgBtzZigtrHZIndMEz7vTHwwkXH-hhmD2jljFCEvVGw1SlZ-jWGJNXs0U7tUeLH-KJRJVExWayCfeX7cF5xymnKjjCYzhzfKyU6wlMtQyMxiqJQ0FCT5trUuSMblTSQJPY95qcCo_GEituw6JYE58osgWzyShR24BM6BLLkOggDhWVjDDJg5g3eYBjptwmq0OjesyRKCnH7eSLlygPPVwWGWAiC0xUAlOH46nEW0G38cfaDQvEdF2JQR32KiSjUh_TyAZelJloNtj5XeoQFjqDm27Uvepd78Ki3aco89uD2Wz8rvZhXkyyYTo-yF-6T84y0qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preserving+Data-Privacy+With+Added+Noises%3A+Optimal+Estimation+and+Privacy+Analysis&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=He%2C+Jianping&rft.au=Cai%2C+Lin&rft.au=Guan%2C+Xinping&rft.date=2018-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=64&rft.issue=8&rft.spage=5677&rft_id=info:doi/10.1109%2FTIT.2018.2842221&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon