Attention-Based Convolutional Denoising Autoencoder for Two-Lead ECG Denoising and Arrhythmia Classification

This article presents a fast and accurate electrocardiogram (ECG) denoising and classification method for low-quality ECG signals. To achieve this, a novel attention-based convolutional denoising autoencoder (ACDAE) model is proposed that utilizes a skip-layer and attention module for reliable recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement Jg. 71; S. 1 - 10
Hauptverfasser: Singh, Prateek, Sharma, Ambalika
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9456, 1557-9662
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article presents a fast and accurate electrocardiogram (ECG) denoising and classification method for low-quality ECG signals. To achieve this, a novel attention-based convolutional denoising autoencoder (ACDAE) model is proposed that utilizes a skip-layer and attention module for reliable reconstruction of ECG signals from extreme noise conditions. Skip-layer connections are used to reduce information loss while reconstructing the original signal, and a lightweight, efficient channel attention (ECA) module is used to update relevant features retrieved via cross-channel interaction efficiently. The model is trained and tested using four widely available databases. For evaluation, the signals are mixed with simulated additive white Gaussian noise (AWGN) ranging from −20 to 20 dB and the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) noise stress test database (NSTDB) noise ranging from −6 to 24 dB. The model outperformed the most cited published works, achieving an average signal-to-noise ratio (SNR) improvement of 19.07 ± 1.67 and a percentage-root-mean-square difference (PRD) of 11.0 % at 0-dB SNR. The model classification performance on 60 000 beats is 98.76% ± 0.44% precision, 98.48% ± 0.58% recall, and 98.88% ± 0.42% accuracy, respectively, using a stratified fivefold cross-validation strategy.
AbstractList This article presents a fast and accurate electrocardiogram (ECG) denoising and classification method for low-quality ECG signals. To achieve this, a novel attention-based convolutional denoising autoencoder (ACDAE) model is proposed that utilizes a skip-layer and attention module for reliable reconstruction of ECG signals from extreme noise conditions. Skip-layer connections are used to reduce information loss while reconstructing the original signal, and a lightweight, efficient channel attention (ECA) module is used to update relevant features retrieved via cross-channel interaction efficiently. The model is trained and tested using four widely available databases. For evaluation, the signals are mixed with simulated additive white Gaussian noise (AWGN) ranging from −20 to 20 dB and the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) noise stress test database (NSTDB) noise ranging from −6 to 24 dB. The model outperformed the most cited published works, achieving an average signal-to-noise ratio (SNR) improvement of 19.07 ± 1.67 and a percentage-root-mean-square difference (PRD) of 11.0 % at 0-dB SNR. The model classification performance on 60 000 beats is 98.76% ± 0.44% precision, 98.48% ± 0.58% recall, and 98.88% ± 0.42% accuracy, respectively, using a stratified fivefold cross-validation strategy.
Author Singh, Prateek
Sharma, Ambalika
Author_xml – sequence: 1
  givenname: Prateek
  orcidid: 0000-0002-8398-9867
  surname: Singh
  fullname: Singh, Prateek
  email: psingh@ee.iitr.ac.in
  organization: Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
– sequence: 2
  givenname: Ambalika
  orcidid: 0000-0002-7112-8410
  surname: Sharma
  fullname: Sharma, Ambalika
  organization: Electrical Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India
BookMark eNp9kMFLwzAUxoNMcJveBS8Fz51JmjTNsdY5BxMv81yyNHEZXTKTVNl_b-eGiAdPDx7f73vv-0ZgYJ1VAFwjOEEI8rvl_HmCIcaTDHHGKDsDQ0QpS3me4wEYQoiKlBOaX4BRCBsIIcsJG4K2jFHZaJxN70VQTVI5--Ha7rARbfKgrDPB2Lek7KJTVrpG-UQ7nyw_XbpQokmm1eyXTNgmKb1f7-N6a0RStSIEo40UB8NLcK5FG9TVaY7B6-N0WT2li5fZvCoXqcQcxZQiwjTnSvKiYFLIlV5hzSGTKwRXOcGU64wI0qdVvGCa5lwi3TAlIckYISwbg9uj7867906FWG9c5_s8ocYM0oJiQmmvgkeV9C4Er3S982Yr_L5GsD50Wved1odO61OnPZL_QaSJ39GiF6b9D7w5gkYp9XOHFzTL-6e_AG6xhkE
CODEN IEIMAO
CitedBy_id crossref_primary_10_1109_TIFS_2023_3346647
crossref_primary_10_1155_2022_5054641
crossref_primary_10_1109_TIM_2025_3551836
crossref_primary_10_1109_JBHI_2024_3355960
crossref_primary_10_1016_j_bspc_2024_107225
crossref_primary_10_1080_03772063_2025_2470375
crossref_primary_10_1109_TIM_2024_3406829
crossref_primary_10_1109_TIM_2025_3552477
crossref_primary_10_1109_TCSI_2025_3533544
crossref_primary_10_1109_JSEN_2024_3397656
crossref_primary_10_1109_TIM_2024_3400302
crossref_primary_10_1109_TIM_2025_3545169
crossref_primary_10_1109_ACCESS_2025_3550949
crossref_primary_10_3390_s24061959
crossref_primary_10_1109_TBME_2023_3307400
crossref_primary_10_1016_j_engappai_2023_106713
crossref_primary_10_1109_TIM_2023_3335528
crossref_primary_10_1109_TIM_2022_3204316
crossref_primary_10_1371_journal_pone_0326079
crossref_primary_10_1109_TIM_2023_3251408
crossref_primary_10_1109_TIM_2024_3522425
crossref_primary_10_1109_TIM_2024_3376017
crossref_primary_10_1109_TIM_2025_3551006
crossref_primary_10_1109_TIM_2025_3574904
crossref_primary_10_1016_j_bspc_2023_104863
crossref_primary_10_1109_TIM_2025_3570370
crossref_primary_10_1038_s41598_025_93906_5
crossref_primary_10_1109_TIM_2023_3312698
crossref_primary_10_3390_bios14040183
crossref_primary_10_1109_TIM_2024_3368495
Cites_doi 10.1109/TIM.2019.2910342
10.1016/j.bspc.2013.01.005
10.1109/JBHI.2017.2706298
10.1088/0967-3334/37/12/2214
10.1016/j.bspc.2020.102194
10.1016/j.compbiomed.2015.03.005
10.1177/2048872616661693
10.1016/j.bspc.2011.11.003
10.1109/TIM.2021.3126019
10.1109/cvpr42600.2020.01155
10.1016/j.compbiomed.2017.12.007
10.1109/INDICON.2017.8488064
10.1109/TIM.2019.2917735
10.1109/ICCV.2017.74
10.1109/TIM.2020.3027930
10.1016/j.bspc.2021.103431
10.1161/01.CTR.101.23.e215
10.1109/CSPA48992.2020.9068696
10.1109/ACCESS.2019.2912036
10.1109/TBME.2003.821031
10.1109/TIM.2020.3039614
10.1145/1390156.1390294
10.1016/j.eswa.2018.07.030
10.1016/j.eswa.2018.08.011
10.1109/TIM.2019.2922054
10.1109/10.959322
10.1109/ACCESS.2020.3012904
10.1016/j.engappai.2016.02.015
10.1109/CVPR.2018.00745
10.1049/iet-spr.2020.0104
10.1109/MECBME.2014.6783250
10.1016/j.bspc.2021.102992
10.1088/1361-6579/ac34ea
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/TIM.2022.3197757
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1557-9662
EndPage 10
ExternalDocumentID 10_1109_TIM_2022_3197757
9853604
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c291t-5147f99ec9887cacbfb2f907cb10b64259f34a4202e987f569c1fd7ec04374473
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844142300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9456
IngestDate Mon Jun 30 10:11:27 EDT 2025
Sat Nov 29 04:38:25 EST 2025
Tue Nov 18 22:18:25 EST 2025
Wed Aug 27 02:28:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-5147f99ec9887cacbfb2f907cb10b64259f34a4202e987f569c1fd7ec04374473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8398-9867
0000-0002-7112-8410
PQID 2705852455
PQPubID 85462
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIM_2022_3197757
ieee_primary_9853604
proquest_journals_2705852455
crossref_citationtrail_10_1109_TIM_2022_3197757
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on instrumentation and measurement
PublicationTitleAbbrev TIM
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref16
ref38
ref19
ref18
(ref1) 2014
Moody (ref20) 1984; 11
ref24
ref23
Mao (ref17); 29
ref26
ref25
ref22
ref28
ref27
Carreiras (ref21) 2015
ref29
O’Malley (ref30) 2019
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref23
  doi: 10.1109/TIM.2019.2910342
– ident: ref5
  doi: 10.1016/j.bspc.2013.01.005
– ident: ref33
  doi: 10.1109/JBHI.2017.2706298
– ident: ref12
  doi: 10.1088/0967-3334/37/12/2214
– ident: ref37
  doi: 10.1016/j.bspc.2020.102194
– ident: ref35
  doi: 10.1016/j.compbiomed.2015.03.005
– ident: ref2
  doi: 10.1177/2048872616661693
– ident: ref10
  doi: 10.1016/j.bspc.2011.11.003
– volume-title: World Health Organization
  year: 2014
  ident: ref1
  article-title: Global status report on noncommunicable diseases 2014
– ident: ref25
  doi: 10.1109/TIM.2021.3126019
– ident: ref29
  doi: 10.1109/cvpr42600.2020.01155
– ident: ref36
  doi: 10.1016/j.compbiomed.2017.12.007
– ident: ref8
  doi: 10.1109/INDICON.2017.8488064
– ident: ref24
  doi: 10.1109/TIM.2019.2917735
– volume: 29
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections
– ident: ref34
  doi: 10.1109/ICCV.2017.74
– ident: ref3
  doi: 10.1109/TIM.2020.3027930
– ident: ref31
  doi: 10.1016/j.bspc.2021.103431
– ident: ref19
  doi: 10.1161/01.CTR.101.23.e215
– ident: ref7
  doi: 10.1109/CSPA48992.2020.9068696
– ident: ref14
  doi: 10.1109/ACCESS.2019.2912036
– ident: ref9
  doi: 10.1109/TBME.2003.821031
– volume: 11
  start-page: 381
  issue: 3
  year: 1984
  ident: ref20
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Comput. Cardiol.
– ident: ref26
  doi: 10.1109/TIM.2020.3039614
– volume-title: BioSPPy: Biosignal Processing in Python
  year: 2015
  ident: ref21
– ident: ref27
  doi: 10.1145/1390156.1390294
– ident: ref11
  doi: 10.1016/j.eswa.2018.07.030
– ident: ref38
  doi: 10.1016/j.eswa.2018.08.011
– ident: ref4
  doi: 10.1109/TIM.2019.2922054
– ident: ref6
  doi: 10.1109/10.959322
– ident: ref22
  doi: 10.1109/ACCESS.2020.3012904
– volume-title: Kerastuner
  year: 2019
  ident: ref30
– ident: ref13
  doi: 10.1016/j.engappai.2016.02.015
– ident: ref28
  doi: 10.1109/CVPR.2018.00745
– ident: ref18
  doi: 10.1049/iet-spr.2020.0104
– ident: ref32
  doi: 10.1109/MECBME.2014.6783250
– ident: ref15
  doi: 10.1016/j.bspc.2021.102992
– ident: ref16
  doi: 10.1088/1361-6579/ac34ea
SSID ssj0007647
Score 2.5668187
Snippet This article presents a fast and accurate electrocardiogram (ECG) denoising and classification method for low-quality ECG signals. To achieve this, a novel...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Arrhythmia
Arrhythmias
atrial fibrillation (AF)
Cardiac stress tests
Classification
Codes
Convolution
convolutional neural network (CNN)
denoising autoencoder (DAE)
electrocardiogram (ECG)
Electrocardiography
Feature extraction
Modules
Noise reduction
Random noise
Recording
Signal quality
Signal to noise ratio
Title Attention-Based Convolutional Denoising Autoencoder for Two-Lead ECG Denoising and Arrhythmia Classification
URI https://ieeexplore.ieee.org/document/9853604
https://www.proquest.com/docview/2705852455
Volume 71
WOSCitedRecordID wos000844142300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007647
  issn: 0018-9456
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_MoaAHPzbF6ZQevAjWtV26LMc5NxV0eJiwW2nzwQazla6b-N_7knZloAjeeshHyS_Je7_k5fcArijryjYRxHYiypCgKM-OlIps5GGuTkClBDcPhZ_paNSdTNhrBW7KtzBSShN8Jm_1p7nLFwlf6qOyFkPb0tHin1uU0vytVrnr0g7J9TFdXMDoFayvJB3WGj-9IBH0POSn6O1oQ7RhgkxOlR8bsbEuw4P__dch7BdepNXLYT-CioxrsLehLViDHRPbyRd1mPeyLA9qtO_QZgmrn8SrYsZhI_cyTmb6xMDqLbNE61oKmVroy1rjz8TWKTitQf9ho1gYC-w5nX5l0_dZaJm0mjrgyGB8DG_Dwbj_aBdJFmzuMTez0WGiijHJGW43POSRijyFSPHIdSIkJz5TbRISHD_JulT5HcZdJajkWhSJENo-gWqcxPIULBwETkNc0lpvuCvQ2fBF5HFfdUJOSBg2oLUe94AXCuQ6EcY8MEzEYQEiFWikggKpBlyXNT5y9Y0_ytY1MmW5ApQGNNfQBsXyXAQedZAmecT3z36vdQ67uu38rKUJ1SxdygvY5qtstkgvzcz7BgdN1ko
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1VLAIOLAVEWXPggkRo4jp1fSxlaUWpOBSJW5R4USuVBLVpEX_P2EmrSiAkbjl4ifxszzx7_AbgkvGGqlFJXS9mHAmKJm6sdewiD_NNAiothX0o3GW9XuPtjb-U4HrxFkYpZYPP1I35tHf5MhVTc1RW5Whb6kb8czWglPj5a63FvsvqNFfI9HEJo18wv5T0eLXfeUYqSAgyVPR3jClaMkI2q8qPrdjal4ed__3ZLmwXfqTTzIHfg5JKyrC1pC5YhnUb3Skm-zBqZlke1ujeotWSTitNZsWcw0buVJIOzZmB05xmqVG2lGrsoDfr9D9T1yThdO5bj0vFokRiz-PBVzZ4H0aOTaxpQo4sygfw-nDfb7XdIs2CKwj3MxddJqY5V4LjhiMiEeuYaMRKxL4XIz0JuK7RiOL4Kd5gOqhz4WvJlDCySJSy2iGsJGmijsDBQRAswkVtFIcbEt2NQMZEBLoeCUqjqALV-biHotAgN6kwRqHlIh4PEanQIBUWSFXgalHjI9ff-KPsvkFmUa4ApQKnc2jDYoFOQsI8JEqEBsHx77UuYKPdf-6G3U7v6QQ2TT_5ycsprGTjqTqDNTHLhpPxuZ2F31UW2ZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention-Based+Convolutional+Denoising+Autoencoder+for+Two-Lead+ECG+Denoising+and+Arrhythmia+Classification&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Singh%2C+Prateek&rft.au=Sharma%2C+Ambalika&rft.date=2022&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=71&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2022.3197757&rft.externalDocID=9853604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon